scispace - formally typeset
Open AccessProceedings Article

Understanding deep learning requires rethinking generalization.

Reads0
Chats0
TLDR
This article showed that deep neural networks can fit a random labeling of the training data, and that this phenomenon is qualitatively unaffected by explicit regularization, and occurs even if the true images are replaced by completely unstructured random noise.
Abstract
Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small difference between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family, or to the regularization techniques used during training. Through extensive systematic experiments, we show how these traditional approaches fail to explain why large neural networks generalize well in practice. Specifically, our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data. This phenomenon is qualitatively unaffected by explicit regularization, and occurs even if we replace the true images by completely unstructured random noise. We corroborate these experimental findings with a theoretical construction showing that simple depth two neural networks already have perfect finite sample expressivity as soon as the number of parameters exceeds the number of data points as it usually does in practice. We interpret our experimental findings by comparison with traditional models.

read more

Citations
More filters
Journal ArticleDOI

Recent advances in convolutional neural networks

TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.
Posted Content

On Calibration of Modern Neural Networks

TL;DR: It is discovered that modern neural networks, unlike those from a decade ago, are poorly calibrated, and on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
Journal ArticleDOI

Understanding deep learning (still) requires rethinking generalization

TL;DR: These experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data, and confirm that simple depth two neural networks already have perfect finite sample expressivity.
Posted Content

mixup: Beyond Empirical Risk Minimization

TL;DR: Mixup as discussed by the authors trains a neural network on convex combinations of pairs of examples and their labels, and regularizes the neural network to favor simple linear behavior in between training examples, which improves the generalization of state-of-the-art neural network architectures.
Proceedings ArticleDOI

Deep Image Prior

TL;DR: It is shown that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting.
Related Papers (5)
Trending Questions (1)
How does the generalization performance of neural networks depend on the architecture and training procedure?

The paper shows that the generalization performance of neural networks cannot be explained solely by the architecture or training procedure.