scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries

28 Oct 2015-Nature Communications (Nature Publishing Group)-Vol. 6, Iss: 1, pp 8689-8689
TL;DR: In this paper, uniform yolkshell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼ 545 mA h g(-1) over 100 cycles at 0.2 C (100 mA g(1)), delivering ultrahigh energy density of ∼ 438 Wh kg(-1).
Abstract: Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼ 545 mA h g(-1) over 100 cycles at 0.2 C (100 mA g(-1)), delivering ultrahigh energy density of ∼ 438 Wh kg(-1). The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼ 170 nm) with porous carbon shells (∼ 30 nm) and extra void space (∼ 20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium-iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide-carbon composites.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
25 Oct 2016-ACS Nano
TL;DR: Improved extrinsic pseudocapacitive contribution is demonstrated as the origin of fast kinetics of an alloying-based SnS2 electrode and the S-edge effect on the fast Na+ migration and reversible and sensitive structure evolution during high-rate charge/discharge is verified.
Abstract: The abundant reserve and low cost of sodium have provoked tremendous evolution of Na-ion batteries (SIBs) in the past few years, but their performances are still limited by either the specific capacity or rate capability. Attempts to pursue high rate ability with maintained high capacity in a single electrode remains even more challenging. Here, an elaborate self-branched 2D SnS2 (B-SnS2) nanoarray electrode is designed by a facile hot bath method for Na storage. This interesting electrode exhibits areal reversible capacity of ca. 3.7 mAh cm–2 (900 mAh g–1) and rate capability of 1.6 mAh cm–2 (400 mAh g–1) at 40 mA cm–2 (10 A g–1). Improved extrinsic pseudocapacitive contribution is demonstrated as the origin of fast kinetics of an alloying-based SnS2 electrode. Sodiation dynamics analysis based on first-principles calculations, ex-situ HRTEM, in situ impedance, and in situ Raman technologies verify the S-edge effect on the fast Na+ migration and reversible and sensitive structure evolution during high-ra...

799 citations


Cites background from "Uniform yolk-shell iron sulfide–car..."

  • ...appealing alternatives is room-temperature sodium ion battery (SIB), which shows especially notable advantages over lithium ion battery (LIB) in terms of cost and supply restriction of Li.(1-5) Among...

    [...]

Journal ArticleDOI
TL;DR: Recent progress on metal sulfides/selenides is summarized in terms of arranging the crystal structure, synthesis methods, electrochemical performance, mechanisms, and kinetics.
Abstract: Rechargeable sodium-ion batteries (SIBs), as the most promising alternative to commercial lithium-ion batteries, have received tremendous attention during the last decade. Among all the anode materials for SIBs, metal sulfides/selenides (MXs) have shown inspiring results because of their versatile material species and high theoretical capacity. They suffer from large volume expansion, however, which leads to bad cycling performance. Thus, methods such as carbon modification, nanosize design, electrolyte optimization, and cut-off voltage control are used to obtain enhanced performance. Here, recent progress on MXs is summarized in terms of arranging the crystal structure, synthesis methods, electrochemical performance, mechanisms, and kinetics. Challenges are presented and effective ways to solve the problems are proposed, and a perspective for future material design is also given. It is hoped that light is shed on the development of MXs to help finally find applications for next-generation rechargeable batteries.

709 citations

Journal ArticleDOI
TL;DR: In this article, the most recent developments on high-performance anode materials for SIBs are summarized, and different reaction mechanisms, challenges associated with these materials, and effective approaches to enhance performance are discussed.
Abstract: Due to massively growing demand arising from energy storage systems, sodium ion batteries (SIBs) have been recognized as the most attractive alternative to the current commercialized lithium ion batteries (LIBs) owing to the wide availability and accessibility of sodium. Unfortunately, the low energy density, inferior power density and poor cycle life are still the main issues for SIBs in the current drive to push the entire technology forward to meet the benchmark requirements for commercialization. Over the past few years, tremendous efforts have been devoted to improving the performance of SIBs, in terms of higher energy density and longer cycling lifespans, by optimizing the electrode structure or the electrolyte composition. In particular, among the established anode systems, those materials, such as metals/alloys, phosphorus/phosphides, and metal oxides/sulfides/selenides, that typically deliver high theoretical sodium-storage capacities have received growing interest and achieved significant progress. Although some review articles on electrodes for SIBs have been published already, many new reports on these anode materials are constantly emerging, with more promising electrochemical performance achieved via novel structural design, surface modification, electrochemical performance testing techniques, etc. So, we herein summarize the most recent developments on these high-performance anode materials for SIBs in this review. Furthermore, the different reaction mechanisms, the challenges associated with these materials, and effective approaches to enhance performance are discussed. The prospects for future high-energy anodes in SIBs are also discussed.

536 citations

Journal ArticleDOI
TL;DR: In this paper, the metal sulfides (MSs) are used as anode material for NIBs and the corresponding electrochemical mechanisms are briefly discussed, with the hope of providing a fuller understanding of the associated electrochemical processes.
Abstract: The high demand for clean and renewable energy has fueled the exploration of advanced energy storage systems. As a potential alternative device for lithium ion batteries, sodium ion batteries (NIBs) have attracted extraordinary attention and are becoming a promising candidate for energy storage due to their low cost and high efficiency. Recent progress has demonstrated that metal sulfides (MSs) are very promising electrode candidates for efficient Na-storage devices, because of their excellent redox reversibility and relatively high capacity. In this review, recent developments of MSs as anode materials for NIBs are presented. The corresponding electrochemical mechanisms are briefly discussed. We also present critical issues, challenges, and perspectives with the hope of providing a fuller understanding of the associated electrochemical processes. Such an understanding is critical for tailoring and designing metal sulfides with the desired activity and stability.

494 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations

Journal ArticleDOI
TL;DR: In this paper, both negative and positive electrode materials in NIB are briefly reviewed, and it is concluded that cost-effective NIB can partially replace Li-ion batteries, but requires further investigation and improvement.
Abstract: Lithium (Li)-ion batteries (LIB) have governed the current worldwide rechargeable battery market due to their outstanding energy and power capability. In particular, the LIB's role in enabling electric vehicles (EVs) has been highlighted to replace the current oil-driven vehicles in order to reduce the usage of oil resources and generation of CO2 gases. Unlike Li, sodium is one of the more abundant elements on Earth and exhibits similar chemical properties to Li, indicating that Na chemistry could be applied to a similar battery system. In the 1970s-80s, both Na-ion and Li-ion electrodes were investigated, but the higher energy density of Li-ion cells made them more applicable to small, portable electronic devices, and research efforts for rechargeable batteries have been mainly concentrated on LIB since then. Recently, research interest in Na-ion batteries (NIB) has been resurrected, driven by new applications with requirements different from those in portable electronics, and to address the concern on Li abundance. In this article, both negative and positive electrode materials in NIB are briefly reviewed. While the voltage is generally lower and the volume change upon Na removal or insertion is larger for Na-intercalation electrodes, compared to their Li equivalents, the power capability can vary depending on the crystal structures. It is concluded that cost-effective NIB can partially replace LIB, but requires further investigation and improvement.

2,885 citations

Journal ArticleDOI
TL;DR: A new electrode material, P2-Na(2/3)[Fe(1/2)Mn( 1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.
Abstract: Although sodium is an abundant element that can be electrochemically and reversibly extracted from and inserted into layered materials, the resulting reversible capacity for storing energy remains low. A manganese–iron–sodium-based electrode is now shown to exhibit a reversible capacity of 190 mAh g−1 due to electrochemically active Fe3+/Fe4+ redox reactions.

1,834 citations

Journal ArticleDOI
TL;DR: In this article, a route for the controlled synthesis of mesoporous polymer nanospheres, which can be further converted into carbon nanosphere through carbonization, is presented.
Abstract: The controlled synthesis of monodisperse nanospheres faces a number of difficulties, such as extensive crosslinking during hydrothermal processes. Here, the authors show a route for the controlled synthesis of mesoporous polymer nanospheres, which can be further converted into carbon nanospheres through carbonization.

1,542 citations