scispace - formally typeset
Open AccessJournal ArticleDOI

Unimpeded permeation of water through helium-leak-tight graphene-based membranes.

Reads0
Chats0
TLDR
Submicrometer-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors, and gases, including helium, but these membranes allow unimpeded permeation of water (H2O permeates through the membranes at least 1010 times faster than He).
Abstract
Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicrometer-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors, and gases, including helium, but these membranes allow unimpeded permeation of water (H 2 O permeates through the membranes at least 10 10 times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two-dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

A roadmap for graphene

TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Journal ArticleDOI

Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications

TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Journal ArticleDOI

Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes

TL;DR: This work investigates permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions, which reveal that the GO membrane can attract a high concentration of small ions into the membrane, which may explain the fast ion transport.
References
More filters
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Journal ArticleDOI

The missing term in effective pair potentials

TL;DR: On the other hand, in this paper, a superparamagnetically collapsed Mossbauer spectrum is obtained for carbon with fewer active sites, and these particles sinter and carburize in a manner more similar to that of Fe particles supported on graphite.
Journal ArticleDOI

Preparation and Characterization of Graphene Oxide Paper

TL;DR: Graphene oxide paper is reported, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets that outperforms many other paper-like materials in stiffness and strength.
Journal ArticleDOI

Humidity fixed points of binary saturated aqueous solutions

TL;DR: In this paper, an evaluated compilation of equilibrium relative humidity in air versus temperature from pure phase to approximately 105 pascal (1 atm) in pressure is presented for 28 binary saturated aqueous solutions.
Related Papers (5)