scispace - formally typeset
Search or ask a question
Journal Article

Units of enzyme activity

01 Mar 1999-Ukraïns'kyĭ biokhimichnyĭ zhurnal (Ukr Biokhim Zh (1999))-Vol. 71, Iss: 2, pp 96
TL;DR: In this article, the Nomenclature Committee on enzymes of the International Union of Biochemistry described the unit E (U), introduced in 1961 and its derivatives: specific activity, molecular (molar) activity, enzyme catalytic center activity and enzyme solution concentration.
Abstract: Units of enzymes activity, recommended by the Nomenclature Committee on enzymes of the International Union of Biochemistry are described the unit E (U), introduced in 1961 and its derivatives: specific activity, molecular (molar) activity, enzyme catalytic centre activity, enzyme solution concentration; the unit catal, introduced in 1972 and its derivatives Information presented is essential to ensure correct expression of enzyme activity
Citations
More filters
Journal ArticleDOI
TL;DR: Basic and recent findings on methodological issues and potential factors influencing sAA measurement are summarized to derive a set of recommendations enabling researchers to successfully using sAA in psychoneuroendocrinological experiments.

526 citations

Journal ArticleDOI
TL;DR: Results suggest that OsPAL06 is a positive regulator in preventing M. oryzae infection from roots and may regulate defense by promoting both phytoalexin accumulation and SA signaling that synergistically and antagonistically interacts with jasmonate- and ethylene-dependent signaling, respectively.
Abstract: Blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Phenylalanine ammonia lyase (PAL) is a key enzyme in the phenylpropanoid pathway, which leads to the biosynthesis of defense-related phytohormone salicylic acid (SA) and flavonoid-type phytoalexins sakuranetin and naringenin. However, the roles and biochemical features of individual rice PALs in defense responses to pathogens remain unclear. Here, we report that rice OsPAL06, which can catalyze the formation of trans-cinnamate using l-phenylalanine, is involved in rice root-M. oryzae interaction. OsPAL06-knockout mutant showed increased susceptibility to M. oryzae invaded from roots and developed typical leaf blast symptoms, accompanied by nearly complete disappearance of sakuranetin and naringenin and a two-third reduction of the SA level in roots. This mutant also showed compensatively induced expression of chalcone synthase, which is involved in flavonoid biosynthesis, isochorismate synthase 1, which is putatively involved in SA synthesis via another pathway, reduced jasmonate content and increased ethylene content. These results suggest that OsPAL06 is a positive regulator in preventing M. oryzae infection from roots. It may regulate defense by promoting both phytoalexin accumulation and SA signaling that synergistically and antagonistically interacts with jasmonate- and ethylene-dependent signaling, respectively.

72 citations

Journal ArticleDOI
TL;DR: Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions.
Abstract: Burkholderia sp. strain SJ98 (DSM 23195) was previously isolated and characterized for degradation and co-metabolic transformation of a number nitroaromatic compounds. In the present study, we evaluated its metabolic activity on chlorinated nitroaromatic compounds (CNACs). Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions. The cells of strain SJ98 removed 2C4NP from the growth medium with sequential release of nearly stoichiometric amounts of chloride and nitrite in culture supernatant. Under aerobic degradation conditions, 2C4NP was transformed into the first intermediate that was identified as p-nitrophenol by high-performance liquid chromatography, LCMS-TOF, and GC-MS analyses. This transformation clearly establishes that the degradation of 2C4NP by strain SJ98 is initiated by “reductive dehalogenation”; an initiation mechanism that has not been previously reported for microbial degradation of CNAC under aerobic conditions.

43 citations

Journal ArticleDOI
TL;DR: The effect of several chemicals displayed variation between SSC and SmC isoenzymes: Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems.
Abstract: This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC) and submerged (SmC) cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.

40 citations

Journal ArticleDOI
TL;DR: An approach for applying biocementation in situ, by combining the surface percolation of nutrients and cementation solution (urea/CaCl2) with in situ cultivation of indigenous soil urease positive microorganisms under non-sterile conditions is proposed.
Abstract: The use of biocementation via microbially induced carbonate precipitation (MICP) for improving the mechanical properties of weak soils in the laboratory has gained increased attention in recent years. This study proposes an approach for applying biocementation in situ, by combining the surface percolation of nutrients and cementation solution (urea/CaCl2) with in situ cultivation of indigenous soil urease positive microorganisms under non-sterile conditions. The enrichment of indigenous ureolytic soil bacteria was firstly tested in batch reactors. Using selective conditions (i.e., pH of 10 and urea concentrations of 0.17 M), highly active ureolytic microorganisms were enriched from four diverse soil samples under both oxygen-limited (anoxic) and oxygen-free (strictly anaerobic) conditions, providing final urease activities of more than 10 and 5 U/mL, respectively. The enrichment of indigenous ureolytic soil microorganisms was secondly tested in pure silica sand columns (300 and 1000 mm) for biocem...

39 citations