scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations.

TL;DR: In this article, the authors present atomistic insights into the mechanism underlying membrane fusion inhibition of SARS-CoV-2 by arbidol and propose that the binding of arbidolin induces structural rigidity in the viral glycoprotein, thus restricting the conformational rearrangements associated with membrane fusion and virus entry.
About: This article is published in European Journal of Pharmacology.The article was published on 2021-03-05 and is currently open access. It has received 38 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent advances in understanding the molecular events during SARS-CoV-2 entry which will contribute to developing vaccines and therapeutics, and discuss some auxiliary receptors and cofactors are also involved that expand the host/tissue tropism.

90 citations

Journal ArticleDOI
TL;DR: This updated docking server, named CB-Dock2, reconfigured the input and output web interfaces, together with a highly automatic docking pipeline, making it a particularly efficient and easy-to-use tool for the bioinformatics and cheminformatics communities.
Abstract: Abstract Protein-ligand blind docking is a powerful method for exploring the binding sites of receptors and the corresponding binding poses of ligands. It has seen wide applications in pharmaceutical and biological researches. Previously, we proposed a blind docking server, CB-Dock, which has been under heavy use (over 200 submissions per day) by researchers worldwide since 2019. Here, we substantially improved the docking method by combining CB-Dock with our template-based docking engine to enhance the accuracy in binding site identification and binding pose prediction. In the benchmark tests, it yielded the success rate of ∼85% for binding pose prediction (RMSD < 2.0 Å), which outperformed original CB-Dock and most popular blind docking tools. This updated docking server, named CB-Dock2, reconfigured the input and output web interfaces, together with a highly automatic docking pipeline, making it a particularly efficient and easy-to-use tool for the bioinformatics and cheminformatics communities. The web server is freely available at https://cadd.labshare.cn/cb-dock2/.

84 citations

Journal ArticleDOI
TL;DR: In this paper , a review summarizes representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment.
Abstract: Abstract Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.

83 citations

Journal ArticleDOI
TL;DR: CB-Dock2 as discussed by the authors improved the CB-DOCK algorithm by combining the template-based docking engine with the template based docking engine to enhance the accuracy in binding site identification and binding pose prediction.
Abstract: Protein-ligand blind docking is a powerful method for exploring the binding sites of receptors and the corresponding binding poses of ligands. It has seen wide applications in pharmaceutical and biological researches. Previously, we proposed a blind docking server, CB-Dock, which has been under heavy use (over 200 submissions per day) by researchers worldwide since 2019. Here, we substantially improved the docking method by combining CB-Dock with our template-based docking engine to enhance the accuracy in binding site identification and binding pose prediction. In the benchmark tests, it yielded the success rate of ∼85% for binding pose prediction (RMSD < 2.0 Å), which outperformed original CB-Dock and most popular blind docking tools. This updated docking server, named CB-Dock2, reconfigured the input and output web interfaces, together with a highly automatic docking pipeline, making it a particularly efficient and easy-to-use tool for the bioinformatics and cheminformatics communities. The web server is freely available at https://cadd.labshare.cn/cb-dock2/.

82 citations

Journal ArticleDOI
TL;DR: This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options and presents an overview of post-COVID-19 complications in patients.
Abstract: The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.

50 citations

References
More filters
Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

24,332 citations

Journal ArticleDOI
TL;DR: In this paper, a new Lagrangian formulation is introduced to make molecular dynamics (MD) calculations on systems under the most general externally applied, conditions of stress, which is well suited to the study of structural transformations in solids under external stress and at finite temperature.
Abstract: A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress‐strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress‐strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

13,937 citations

Journal ArticleDOI
TL;DR: Although the derivation of the algorithm is presented in terms of matrices, no matrix matrix multiplications are needed and only the nonzero matrix elements have to be stored, making the method useful for very large molecules.
Abstract: In this article, we present a new LINear Constraint Solver (LINCS) for molecular simulations with bond constraints. The algorithm is inherently stable, as the constraints themselves are reset instead of derivatives of the constraints, thereby eliminating drift. Although the derivation of the algorithm is presented in terms of matrices, no matrix matrix multiplications are needed and only the nonzero matrix elements have to be stored, making the method useful for very large molecules. At the same accuracy, the LINCS algorithm is three to four times faster than the SHAKE algorithm. Parallelization of the algorithm is straightforward. (C) 1997 John Wiley & Sons, Inc.

12,699 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a new molecular dynamics algorithm for sampling the canonical distribution, where the velocities of all the particles are rescaled by a properly chosen random factor.
Abstract: The authors present a new molecular dynamics algorithm for sampling the canonical distribution. In this approach the velocities of all the particles are rescaled by a properly chosen random factor. The algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can still be defined that remains constant during the evolution. In numerical applications this quantity can be used to measure the accuracy of the sampling. The authors illustrate the properties of this new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its performance is excellent and largely independent of the thermostat parameter also with regard to the dynamic properties.

11,327 citations