scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Unraveling the Regulation of Hepatic Metabolism by Insulin.

01 Jul 2017-Trends in Endocrinology and Metabolism (Trends Endocrinol Metab)-Vol. 28, Iss: 7, pp 497-505
TL;DR: It is posited that a failure of insulin to inappropriately regulate liver metabolism during T2DM is not exclusively from an inherent defect in canonical liver insulin signaling but is instead due to a combination of hyperinsulinemia, altered substrate supply, and the input of several extrahepatic signals.
Abstract: During insulin-resistant states such as type 2 diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production but promotes lipid synthesis leading to hyperglycemia and hypertriglyceridemia. Defining the downstream signaling pathways underlying the control of hepatic metabolism by insulin is necessary for understanding both normal physiology and the pathogenesis of metabolic disease. We summarize recent literature highlighting the importance of both hepatic and extrahepatic mechanisms in insulin regulation of liver glucose and lipid metabolism. We posit that a failure of insulin to inappropriately regulate liver metabolism during T2DM is not exclusively from an inherent defect in canonical liver insulin signaling but is instead due to a combination of hyperinsulinemia, altered substrate supply, and the input of several extrahepatic signals.
Citations
More filters
Journal ArticleDOI
TL;DR: This work aims to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response.
Abstract: The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have ma...

1,268 citations

Journal ArticleDOI
TL;DR: This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases.
Abstract: Obesity and type 2 diabetes mellitus are complicated metabolic diseases that affect multiple organs and are characterized by hyperglycaemia. Currently, stable and effective treatments for obesity and type 2 diabetes mellitus are not available. Therefore, the mechanisms leading to obesity and diabetes and more effective ways to treat obesity and diabetes should be identified. Based on accumulated evidences, the PI3K/AKT signalling pathway is required for normal metabolism due to its characteristics, and its imbalance leads to the development of obesity and type 2 diabetes mellitus. This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases. We also summarize evidences for recently identified therapeutic targets of the PI3K/AKT pathway as treatments for obesity and type 2 diabetes mellitus. PI3K/AKT pathway damaged in various tissues of the body leads to obesity and type 2 diabetes as the result of insulin resistance, and in turn, insulin resistance exacerbates the PI3K/AKT pathway, forming a vicious circle.

711 citations


Cites background from "Unraveling the Regulation of Hepati..."

  • ...Three pathways may mediate cell-nonautonomous effects on hepatic glucose metabolism [88]....

    [...]

Journal ArticleDOI
TL;DR: This review analyzes the key aspects of type 2 Diabetes Mellitus, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance, and summarizes the data gathered up until now.
Abstract: Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.

626 citations


Cites background from "Unraveling the Regulation of Hepati..."

  • ...synthesis, gluconeogenesis, glycolysis and lipid synthesis [169]....

    [...]

  • ...Once AKT is fully activated, it participates in several downstream pathways that regulate multiple metabolic processes including glycogen synthesis, gluconeogenesis, glycolysis and lipid synthesis [169]....

    [...]

Journal ArticleDOI
TL;DR: In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization, which will accelerate the discovery of new treatment modalities for diabetes.
Abstract: The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.

450 citations

01 Jan 2004
TL;DR: It is demonstrated that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggested that PKc-η is a potential therapeutic target for the treatment of type 2 diabetes.
Abstract: Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C–θ (PKC-θ), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-θ are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-θ KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40–50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate–1 (IRS-1) and IRS-1–associated PI3K activity. In contrast, PKC-θ inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-θ is a potential therapeutic target for the treatment of type 2 diabetes.

423 citations

References
More filters
Journal ArticleDOI
TL;DR: The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice and form the subject of this review.
Abstract: Lipid homeostasis in vertebrate cells is regulated by a family of membrane-bound transcription factors designated sterol regulatory element–binding proteins (SREBPs). SREBPs directly activate the expression of more than 30 genes dedicated to the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids, as well as the NADPH cofactor required to synthesize these molecules (1–4). In the liver, three SREBPs regulate the production of lipids for export into the plasma as lipoproteins and into the bile as micelles. The complex, interdigitated roles of these three SREBPs have been dissected through the study of ten different lines of gene-manipulated mice. These studies form the subject of this review.

4,406 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the biological sources of hepatic and plasma lipoprotein TAG in NAFLD patients, using stable isotopes for four days to label and track serum nonesterified fatty acids (NEFAs), dietary fatty acids, and those derived from the de novo lipogenesis (DNL) pathway, present in liver tissue and lipid TAG.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess liver triacylglycerol (TAG), inflammation, and liver damage The goal of the present study was to directly quantify the biological sources of hepatic and plasma lipoprotein TAG in NAFLD Patients (5 male and 4 female; 44 ± 10 years of age) scheduled for a medically indicated liver biopsy were infused with and orally fed stable isotopes for 4 days to label and track serum nonesterified fatty acids (NEFAs), dietary fatty acids, and those derived from the de novo lipogenesis (DNL) pathway, present in liver tissue and lipoprotein TAG Hepatic and lipoprotein TAG fatty acids were analyzed by gas chromatography/mass spectrometry NAFLD patients were obese, with fasting hypertriglyceridemia and hyperinsulinemia Of the TAG accounted for in liver, 590% ± 99% of TAG arose from NEFAs; 261% ± 67%, from DNL; and 149% ± 70%, from the diet The pattern of labeling in VLDL was similar to that in liver, and throughout the 4 days of labeling, the liver demonstrated reciprocal use of adipose and dietary fatty acids DNL was elevated in the fasting state and demonstrated no diurnal variation These quantitative metabolic data document that both elevated peripheral fatty acids and DNL contribute to the accumulation of hepatic and lipoprotein fat in NAFLD

2,870 citations

Journal ArticleDOI
TL;DR: The concept of 'critical nodes' is used to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.
Abstract: Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.

2,517 citations

Journal ArticleDOI
TL;DR: The results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.

1,143 citations

Journal ArticleDOI
TL;DR: A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator–co-activator cognates discriminate between different stimuli.
Abstract: The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator-co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.

865 citations