scispace - formally typeset
Search or ask a question
Posted Content

Unrolling SGD: Understanding Factors Influencing Machine Unlearning

TL;DR: In this paper, the authors taxonomize approaches and metrics of approximate unlearning and identify verification error, i.e., the L 2 difference between the weights of an approximately unlearned and a naively retrained model, as a metric approximate un learning should optimize for as it implies a large class of other metrics.
Abstract: Machine unlearning is the process through which a deployed machine learning model forgets about one of its training data points. While naively retraining the model from scratch is an option, it is almost always associated with a large computational effort for deep learning models. Thus, several approaches to approximately unlearn have been proposed along with corresponding metrics that formalize what it means for a model to forget about a data point. In this work, we first taxonomize approaches and metrics of approximate unlearning. As a result, we identify verification error, i.e., the L2 difference between the weights of an approximately unlearned and a naively retrained model, as a metric approximate unlearning should optimize for as it implies a large class of other metrics. We theoretically analyze the canonical stochastic gradient descent (SGD) training algorithm to surface the variables which are relevant to reducing the verification error of approximate unlearning for SGD. From this analysis, we first derive an easy-to-compute proxy for verification error (termed unlearning error). The analysis also informs the design of a new training objective penalty that limits the overall change in weights during SGD and as a result facilitates approximate unlearning with lower verification error. We validate our theoretical work through an empirical evaluation on CIFAR-10, CIFAR-100, and IMDB sentiment analysis.
Citations
More filters
Posted ContentDOI
20 Feb 2023-bioRxiv
TL;DR: AFS as discussed by the authors is a unified open-source software which is able to evaluate and revoke patients' private data from pre-trained deep learning models, where auditing means determining whether a dataset has been used to train the model and forgetting requires the information of a query dataset to be forgotten from the target model.
Abstract: Revoking personal private data is one of the basic human rights, which has already been sheltered by several privacy-preserving laws in many countries. However, with the development of data science, machine learning and deep learning techniques, this right is usually neglected or violated as more and more patients’ data are being collected and used for model training, especially in intelligent healthcare, thus making intelligent healthcare a sector where technology must meet the law, regulations, and privacy principles to ensure that the innovation is for the common good. In order to secure patients’ right to be forgotten, we proposed a novel solution by using auditing to guide the forgetting process, where auditing means determining whether a dataset has been used to train the model and forgetting requires the information of a query dataset to be forgotten from the target model. We unified these two tasks by introducing a new approach called knowledge purification. To implement our solution, we developed AFS, a unified open-source software, which is able to evaluate and revoke patients’ private data from pre-trained deep learning models. We demonstrated the generality of AFS by applying it to four tasks on different datasets with various data sizes and architectures of deep learning networks. The software is publicly available at https://github.com/JoshuaChou2018/AFS.

3 citations

Posted Content
TL;DR: In this paper, the authors show that even for a given training trajectory one cannot formally prove the absence of certain data points used during training, since one can obtain the same model using different datasets.
Abstract: Machine unlearning, i.e. having a model forget about some of its training data, has become increasingly more important as privacy legislation promotes variants of the right-to-be-forgotten. In the context of deep learning, approaches for machine unlearning are broadly categorized into two classes: exact unlearning methods, where an entity has formally removed the data point's impact on the model by retraining the model from scratch, and approximate unlearning, where an entity approximates the model parameters one would obtain by exact unlearning to save on compute costs. In this paper we first show that the definition that underlies approximate unlearning, which seeks to prove the approximately unlearned model is close to an exactly retrained model, is incorrect because one can obtain the same model using different datasets. Thus one could unlearn without modifying the model at all. We then turn to exact unlearning approaches and ask how to verify their claims of unlearning. Our results show that even for a given training trajectory one cannot formally prove the absence of certain data points used during training. We thus conclude that unlearning is only well-defined at the algorithmic level, where an entity's only possible auditable claim to unlearning is that they used a particular algorithm designed to allow for external scrutiny during an audit.

1 citations

Journal ArticleDOI
TL;DR: S crubber as discussed by the authors removes sensitive data from the original model via influence estimation to produce an unlearning model that is approximately indistinguishable from the retrained model, which is a closed-form update of forgetting.
Abstract: The rapidly exploding of user data, especially applications of neural networks, involves analyzing data collected from individuals, which brings convenience to life. Meanwhile, privacy leakage in the applications as a potential threat needs to be addressed urgently. However, removing private information from models is difficult once the user's sensitive data enters machine learning models, particularly neural networks. Most of the previous amnestic methods based on retraining require full access to the training set of the target model and have limited improvements in computational resources and time improvement. In this paper, we propose Scrubber, which removes sensitive data from the original model via influence estimation to produce an unlearning model that is approximately indistinguishable from the retrained model. S crubber builds on the essential concept of influence function and reformulates the influence estimation as a closed‐form update of forgetting. For learned models with strictly convex loss functions, our approach theoretically guarantees the effectiveness of forgetting while empirically demonstrating forgetting performance. For models with non‐convex losses, we relax strictly convex assumptions by applying a damping term that allows us to make approximate estimates with negligible errors from the original assumption. Furthermore, experiments show that S crubber only causes less than 1% and 3% accuracy drop with more than 80% forgetting rate on average for logistic regression models and convolutional neural networks. The accuracy drop is reduced by 2%–3% compared to most state‐of‐the‐art methods.

1 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Book
11 Aug 2014
TL;DR: The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.
Abstract: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.After motivating and discussing the meaning of differential privacy, the preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some astonishingly powerful computational results, there are still fundamental limitations — not just on what can be achieved with differential privacy but on what can be achieved with any method that protects against a complete breakdown in privacy. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power. Certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed.We then turn from fundamentals to applications other than queryrelease, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams is discussed.Finally, we note that this work is meant as a thorough introduction to the problems and techniques of differential privacy, but is not intended to be an exhaustive survey — there is by now a vast amount of work in differential privacy, and we can cover only a small portion of it.

5,190 citations