scispace - formally typeset
Book ChapterDOI

Unsupervised Feature Descriptors Based Facial Tracking over Distributed Geospatial Subspaces

05 Dec 2017-pp 196-202

TL;DR: This work proposes a system for fast large scale facial tracking over distributed systems beyond individual human capabilities leveraging the computational prowess of large scale processing engines such as Apache Spark.

AbstractObject Tracking has primarily been characterized as the study of object motion trajectory over constraint subspaces under attempts to mimic human efficiency. However, the trend of monotonically increasing applicability and integrated relevance over distributed commercial frontiers necessitates that scalability be addressed. The present work proposes a system for fast large scale facial tracking over distributed systems beyond individual human capabilities leveraging the computational prowess of large scale processing engines such as Apache Spark. The system is pivoted on an interval based approach for receiving the input feed streams, which is followed by a deep encoder-decoder network for generation of robust environment invariant feature encoding. The system performance is analyzed while functionally varying various pipeline components, to highlight the robustness of the vector representations and near real-time processing performance.

...read more


References
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

11,792 citations


"Unsupervised Feature Descriptors Ba..." refers methods in this paper

  • ...Facial Extraction and Component Definition is done using a region based Single Shot Detector [6]....

    [...]

Book ChapterDOI
TL;DR: SSD as mentioned in this paper discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, and combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at this https URL .

10,351 citations

Proceedings Article
22 Jun 2010
TL;DR: Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.
Abstract: MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms, as well as interactive data analysis tools. We propose a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.

4,645 citations


"Unsupervised Feature Descriptors Ba..." refers background in this paper

  • ...The system we propose seeks to leverage the particular computational prowess of large scale processing engines in applications involving reuse of working set across parallel operations [12] while assuring fault tolerance, consistency and seamless integration with batch processing, all which are critical considerables for scalable and reliable execution....

    [...]

Journal ArticleDOI
TL;DR: Pfinder is a real-time system for tracking people and interpreting their behavior that uses a multiclass statistical model of color and shape to obtain a 2D representation of head and hands in a wide range of viewing conditions.
Abstract: Pfinder is a real-time system for tracking people and interpreting their behavior. It runs at 10 Hz on a standard SGI Indy computer, and has performed reliably on thousands of people in many different physical locations. The system uses a multiclass statistical model of color and shape to obtain a 2D representation of head and hands in a wide range of viewing conditions. Pfinder has been successfully used in a wide range of applications including wireless interfaces, video databases, and low-bandwidth coding.

4,229 citations

Proceedings Article
04 Dec 2006
TL;DR: These experiments confirm the hypothesis that the greedy layer-wise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are high-level abstractions of the input, bringing better generalization.
Abstract: Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until recently it was not clear how to train such deep networks, since gradient-based optimization starting from random initialization appears to often get stuck in poor solutions. Hinton et al. recently introduced a greedy layer-wise unsupervised learning algorithm for Deep Belief Networks (DBN), a generative model with many layers of hidden causal variables. In the context of the above optimization problem, we study this algorithm empirically and explore variants to better understand its success and extend it to cases where the inputs are continuous or where the structure of the input distribution is not revealing enough about the variable to be predicted in a supervised task. Our experiments also confirm the hypothesis that the greedy layer-wise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are high-level abstractions of the input, bringing better generalization.

4,032 citations