scispace - formally typeset
Search or ask a question
Book ChapterDOI

Unsupervised learning method for mineral identification from hyperspectral data

TL;DR: Principal component analysis is used to reduced it’s dimension by reducing bands of Hyperspectral imagery and shows that PFCM is perform better than K-means for the both type of images.
Abstract: Hyperspectral imagery is one of the research area in the field of Remote sensing. Hyperspectral sensors record reflectance (also called spectra signature) of object or material or region across the electromagnetic spectrum. Mineral identification is an urban application in the field of Remote sensing of Hyperspectral data. EO-1 hyperion dataset is unlabeled data. Various types of clustering algorithms are proposed to identify minerals. In this work principal component analysis is used to reduced it’s dimension by reducing bands. Hard-clustering and soft-clustering algorithms are applied on given data to classify the minerals into classes. K-means is hard type of clustering which classify only non-overlapping cluster however, PFCM is soft type of clustering which allow a data points to belongs more than one cluster. Further, results are compared using cluster validity index using DBI value. Both clustering algorithms are experiments on original HSI image and reduced bands. Result shows that PFCM is perform better than K-means for the both type of images.
References
More filters
Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations

Journal ArticleDOI
TL;DR: A new model called possibilistic-fuzzy c-means (PFCM) model, which solves the noise sensitivity defect of FCM, overcomes the coincident clusters problem of PCM and eliminates the row sum constraints of FPCM.
Abstract: In 1997, we proposed the fuzzy-possibilistic c-means (FPCM) model and algorithm that generated both membership and typicality values when clustering unlabeled data. FPCM constrains the typicality values so that the sum over all data points of typicalities to a cluster is one. The row sum constraint produces unrealistic typicality values for large data sets. In this paper, we propose a new model called possibilistic-fuzzy c-means (PFCM) model. PFCM produces memberships and possibilities simultaneously, along with the usual point prototypes or cluster centers for each cluster. PFCM is a hybridization of possibilistic c-means (PCM) and fuzzy c-means (FCM) that often avoids various problems of PCM, FCM and FPCM. PFCM solves the noise sensitivity defect of FCM, overcomes the coincident clusters problem of PCM and eliminates the row sum constraints of FPCM. We derive the first-order necessary conditions for extrema of the PFCM objective function, and use them as the basis for a standard alternating optimization approach to finding local minima of the PFCM objective functional. Several numerical examples are given that compare FCM and PCM to PFCM. Our examples show that PFCM compares favorably to both of the previous models. Since PFCM prototypes are less sensitive to outliers and can avoid coincident clusters, PFCM is a strong candidate for fuzzy rule-based system identification.

1,118 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with.
Abstract: Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.

629 citations

Journal ArticleDOI
TL;DR: A novel network architecture, fully Conv–Deconv network for unsupervised spectral–spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner and an in-depth investigation of learned features is introduced.
Abstract: Supervised approaches classify input data using a set of representative samples for each class, known as training samples . The collection of such samples is expensive and time demanding. Hence, unsupervised feature learning, which has a quick access to arbitrary amounts of unlabeled data, is conceptually of high interest. In this paper, we propose a novel network architecture, fully Conv–Deconv network, for unsupervised spectral–spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner. Specifically, our network is based on the so-called encoder–decoder paradigm, i.e., the input 3-D hyperspectral patch is first transformed into a typically lower dimensional space via a convolutional subnetwork (encoder), and then expanded to reproduce the initial data by a deconvolutional subnetwork (decoder). However, during the experiment, we found that such a network is not easy to be optimized. To address this problem, we refine the proposed network architecture by incorporating: 1) residual learning and 2) a new unpooling operation that can use memorized max-pooling indexes. Moreover, to understand the “black box,” we make an in-depth study of the learned feature maps in the experimental analysis. A very interesting discovery is that some specific “neurons” in the first residual block of the proposed network own good description power for semantic visual patterns in the object level, which provide an opportunity to achieve “free” object detection. This paper, for the first time in the remote sensing community, proposes an end-to-end fully Conv–Deconv network for unsupervised spectral–spatial feature learning. Moreover, this paper also introduces an in-depth investigation of learned features. Experimental results on two widely used hyperspectral data, Indian Pines and Pavia University, demonstrate competitive performance obtained by the proposed methodology compared with other studied approaches.

234 citations

Journal ArticleDOI
TL;DR: It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets, rather than all the elements in the scene, the M TMF algorithm could be proposed.
Abstract: This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment. The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) algorithms in the Sarduiyeh area, SE Kerman, Iran, using the visible-near infrared (VNIR) and short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the results were compared to evaluate the efficiency of methods. Three groups of alteration minerals were identified: (1) pyrophylite-alunite (2) sericite-kaolinite, and (3) chlorite-calcite-epidote. Results showed that high abundances within pixels were successfully corresponded to the alteration zones. In addition, a number of unreported altered areas were identified. Field observations and X-ray diffraction (XRD) analysis of field samples confirmed the dominant mineral p...

77 citations