scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Use of Friction Surfacing for Additive Manufacturing

05 Feb 2013-Materials and Manufacturing Processes (Taylor & Francis Group)-Vol. 28, Iss: 2, pp 189-194
TL;DR: In this paper, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single-and multi-track approaches, and samples with fully enclosed internal cavities were also successfully produced.
Abstract: In this work, we explore the possibility of utilizing friction surfacing, an emerging solid-state surface coating process, for layer-by-layer manufacture of three-dimensional metallic parts. One possibility in this regard (single-track friction surfacing) is to utilize friction surfacing for depositing a track or layer of material (sufficiently wide to cover the entire layer area), which is subsequently shaped to its corresponding slice counter using CNC machining. Another possibility (multi-track friction surfacing) is to generate a layer from multiple overlapping tracks of friction surfaced material, which is subsequently shaped as required using CNC machining. In the current work, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single- and multi-track approaches. Samples with fully enclosed internal cavities and those consisting of different materials in different layers were also successfully produced. The deposits showed fine-grain wrought micr...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the idea of transforming organic molecular films into carbon thin films is proposed to fabricate thickness-controllable and wear-resistant carbon-based solid lubricants for MEMS/NEMS.
Abstract: To meet the lubrication demands of future MEMS/NEMS, thickness-controllable carbon films have been successfully prepared directly on silicon substrates by carbonizing electrophoresis-deposited trichloroacetic acid (TCA) molecular films. Compared with easily worn-out TCA molecular films, the transformed carbon films exhibit ultra-low friction coefficients and wear rates, along with strong adhesion to silicon substrates. These results prove that the idea of transforming organic molecular films into carbon thin films is a unique and promising approach to fabricate thickness-controllable and wear-resistant carbon-based solid lubricants for MEMS/NEMS.

4 citations

Journal ArticleDOI
TL;DR: Friction-assisted seam welding (FASW), additive friction stir (AFS) process, and friction stir additive manufacturing (FSAM) process have been investigated in both theoretical and experimental manner in this paper .
Abstract: Additive manufacturing comprises layer-by-layer construction of 3D parts using computer controls. This present-day study reveals a list of novel concepts for additive manufacturing, where the addition of material is achieved in solid-state. Materials joined by solid-state techniques exhibits properties beyond those exhibited by material joined by conventional techniques. This has been investigated in both theoretical and experimental manner in length. However, with the development of additive manufacturing techniques, a wide range of possibilities for fabricating complex structures have been identified, which can never be accomplished by conventional techniques. Research on metal-based additive manufacturing has been comparatively less as these products deprive lateral and transverse strength and have issues of anisotropy, making them unfit for structural applications. Moreover, these techniques are not cost-effective. So to overcome these issues, methods incorporating friction into additive manufacturing have been developed. These solid-state techniques use the principle of layer-by-layer deposition. Most of these techniques utilize the principle of selective deposition of materials to form the desired material layer. In this literature review, different advances, approaches, features, and principles of friction-based material joining techniques alongside additive manufacturing are discussed in detail, which recommends new openings for researchers to work in interdisciplinary research to fabricate structures that can exhibit unique properties. This literature portrays an extensive account of the contemporary methods in the fabrication of structures using friction-based additive manufacturing techniques and highlights areas that are worth further research and necessitate a consistent effort on account of the aforementioned disciplines to advance the modernistic technique. Initially, a brief review of different solid-state additive manufacturing techniques is presented, followed by a comprehensive summary of friction stir-based additive manufacturing techniques such as friction assisted seam welding (FASW), additive friction stir (AFS) process, and friction stir additive manufacturing (FSAM) process.

4 citations

Book ChapterDOI
01 Jan 2022

4 citations

Journal ArticleDOI
TL;DR: In this article , a sliding wear test was performed on a pin-on-disc tribometer using Si-rich Al-Si alloys in as-cast and FS processed states as pins and 42CrMo4 steel discs.
Abstract: In this work, Al alloys with 6.6%, 10.4%, and 14.6% Si were deposited as thick coatings by Friction Surfacing (FS), resulting in grain refinement and spheroidization of needle-shaped eutectic Si phase. Lubricated sliding wear tests were performed on a pin-on-disc tribometer using Al-Si alloys in as-cast and FS processed states as pins and 42CrMo4 steel discs. The chemical composition of the worn surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The wear mechanisms were studied by scanning electron microscopy (SEM) and focused ion beam (FIB), and the wear was evaluated by measuring the weight loss of the samples. For the hypoeutectic alloys, spheroidization of the Si phase particles in particular leads to a significant improvement in wear resistance. The needle-shaped Si phase in as-cast state fractures during the wear test and small fragments easily detach from the surface. The spherical Si phase particles in the FS state also break away from the surface, but to a smaller extent. No reduction in wear due to FS was observed for the hypereutectic alloy. Here, large bulky primary Si phase particles are already present in the as-cast state and do not change significantly during FS, providing high wear resistance in both material states. This study highlights the mechanisms and limitations of improved wear resistance of Si-rich Al alloys deposited as thick coatings by Friction Surfacing.

4 citations

References
More filters
Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ...Finally, part fabrication with these processes typically takes a very long time as the deposition rates are very low (less than 1 gram=minute) [2]....

    [...]

01 Apr 2007
TL;DR: The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy.
Abstract: Transactions of The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy, materials engineering, physical, chemical and mechanical metallurgy, welding science and technology, surface engineering and characterisation, materials development, thermodynamics and kinetics, materials modelling and to other allied branches of metallurgy and materials engineering.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, and the coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate.
Abstract: This paper is concerned with the friction surfacing of high-speed steels, BM2, BT15 and ASP30 onto plain carbon steel plate. The events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, is described. The coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate. This autohardening is observed to be an inherent feature of the friction surfacing process and the only post-coating heat treatment required is tempering, as with traditionally hardened high-speed steels. The mechanism of autohardening is discussed in terms of the mechtrode/coating/substrate thermal system.

85 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ..., around 1200 C in the case of alloy 410) [15, 16, 19]....

    [...]

  • ...2b, friction surfaced deposits typically show lack of bonding at the deposit edges, due to material roll-over [13, 15]....

    [...]

Patent
04 Oct 2000
TL;DR: In this paper, friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape.
Abstract: Friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape. Monolithic or composite sheets, tapes and filaments can be consolidated using the approach. A system according to the invention includes a source of friction; a mechanism for applying a forging load between a feedstock power supply and a work surface; a work-head, which may have various configurations depending on the geometry of the feedstock to be used; a material feeding system; and a computer-controlled actuation system which controls the placement of material increments added to an object being built. A computer model of the object to be built is used to generate commands to produce the object additively and automatically. The approach provides a solid, freeform fabrication technique that requires no tooling, operates in the solid state, and creates a bond directly at the faying surfaces (i.e., acts only at the location where bonding/consolidation of the material increments is desired).

80 citations