scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Use of Friction Surfacing for Additive Manufacturing

05 Feb 2013-Materials and Manufacturing Processes (Taylor & Francis Group)-Vol. 28, Iss: 2, pp 189-194
TL;DR: In this paper, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single-and multi-track approaches, and samples with fully enclosed internal cavities were also successfully produced.
Abstract: In this work, we explore the possibility of utilizing friction surfacing, an emerging solid-state surface coating process, for layer-by-layer manufacture of three-dimensional metallic parts. One possibility in this regard (single-track friction surfacing) is to utilize friction surfacing for depositing a track or layer of material (sufficiently wide to cover the entire layer area), which is subsequently shaped to its corresponding slice counter using CNC machining. Another possibility (multi-track friction surfacing) is to generate a layer from multiple overlapping tracks of friction surfaced material, which is subsequently shaped as required using CNC machining. In the current work, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single- and multi-track approaches. Samples with fully enclosed internal cavities and those consisting of different materials in different layers were also successfully produced. The deposits showed fine-grain wrought micr...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors investigated the feasibility of utilizing a friction stir deposition (FSD) technique to fabricate continuous multilayer high-performance, metal-based nanoceramic composites.
Abstract: The current work investigates the viability of utilizing a friction stir deposition (FSD) technique to fabricate continuous multilayer high-performance, metal-based nanoceramic composites. For this purpose, AA2011/nano Al2O3 composites were successfully produced using AA2011 as a matrix in two temper conditions (i.e., AA2011-T6 and AA2011-O). The deposition of matrices without nano Al2O3 addition was also friction stir deposited for comparison purposes. The deposition process parameters were an 800 rpm rod rotation speed and a 5 mm/min feed rate. Relative density and mechanical properties (i.e., hardness, compressive strength, and wear resistance) were evaluated on the base materials, deposited matrices, and produced composites. The microstructural features of the base materials and the friction stir deposited materials were investigated using an optical microscope (OM) and a scanning electron microscope (SEM) equipped with an EDS analysis system. The worn surface was also examined using SEM. The suggested technique with the applied parameters succeeded in producing defect-free deposited continuous multilayer AA2011-T6/nano Al2O3 and AA2011-O/nano Al2O3 composites, revealing well-bonded layers, grain refined microstructures, and homogeneously distributed Al2O3 particles. The deposited composites showed higher hardness, compressive strengths, and wear resistance than the deposited AA2011 matrices at the two temper conditions. Using the AA2011-T6 temper condition as a matrix, the produced composite showed the highest wear resistance among all the deposited and base materials.

14 citations

Journal ArticleDOI
TL;DR: In this article, the microstructural and microhardness characterization of fabricated component was done to evaluate the micro-structural changes and, bonding between subsequent layers of fabricated build.

13 citations

Posted Content
TL;DR: Different approaches towards modification of AM processes aimed to reach multi-material or composite parts are being reviewed in this paper.
Abstract: Aside from the capability of additive manufacturing (AM) methods in fabricating components with complex geometries, two crucial potentials of this manufacturing process that are worth mentioning are its flexibility in being combined with other production methods as well as use of a variety of materials in a single production platform to make multi-material and composite products. Implementation of multiple materials in integrated structures has been shown to improve the functionality, weight reduction and, by merging the assembly and production into one stage, modify the manufacturing processes. Different approaches towards modification of AM processes aimed to reach multi-material or composite parts are being reviewed in this paper.

13 citations


Cites background from "Use of Friction Surfacing for Addit..."

  • ...machining process to shape the layers and produce the desired three-dimensional component [102, 103]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated, and it was found that due to the strengthening by solid solution and the formation of precipitates and intermetallic containing Ag, the driving force for grain growth is reduced and consequently the grain size of the coating is decreased.

13 citations

Journal ArticleDOI
TL;DR: In this paper, solid-state additive manufacturing of two temper conditions AA2011 was successfully conducted using the friction stir deposition (FSD) process, and the effect of the rotation rate and feeding speed of consumable bars on the macrostructure, microstructure and hardness of the FSD materials were examined.
Abstract: In the current study, solid-state additive manufacturing (SSAM) of two temper conditions AA2011 was successfully conducted using the friction stir deposition (FSD) process. The AA2011-T6 and AA2011-O consumable bars of 20 mm diameter were used as a feeding material against AA5083 substrate. The effect of the rotation rate and feeding speed of the consumable bars on the macrostructure, microstructure, and hardness of the friction stir deposited (FSD) materials were examined. The AA2011-T6 bars were deposited at a constant rotation rate of 1200 rpm and different feeding speeds of 3, 6, and 9 mm/min, whereas the AA2011-O bars were deposited at a constant rotation rate of 200 mm/min and varied feeding speeds of 1, 2, and 3 mm/min. The obtained microstructure was investigated using an optical microscope and scanning electron microscope equipped with EDS analysis to evaluate microstructural features. Hardness was also assessed as average values and maps. The results showed that this new technique succeeded in producing sound additive manufactured parts at all the applied processing parameters. The microstructures of the additive manufactured parts showed equiaxed refined grains compared to the coarse grain of the starting materials. The detected intermetallics in AA2011 alloy are mainly Al2Cu and Al7Cu2Fe. The improvement in hardness of AA2011-O AMPs reached 163% of the starting material hardness at the applied feeding speed of 1 mm/min. The hardness mapping analysis reveals a homogeneous hardness profile along the building direction. Finally, it can be said that the temper conditions of the starting AA2011 materials govern the selection of the processing parameters in terms of rotation rate and feeding speed and affects the properties of the produced additive manufactured parts in terms of hardness and microstructural features.

12 citations

References
More filters
Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ...Finally, part fabrication with these processes typically takes a very long time as the deposition rates are very low (less than 1 gram=minute) [2]....

    [...]

01 Apr 2007
TL;DR: The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy.
Abstract: Transactions of The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy, materials engineering, physical, chemical and mechanical metallurgy, welding science and technology, surface engineering and characterisation, materials development, thermodynamics and kinetics, materials modelling and to other allied branches of metallurgy and materials engineering.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, and the coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate.
Abstract: This paper is concerned with the friction surfacing of high-speed steels, BM2, BT15 and ASP30 onto plain carbon steel plate. The events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, is described. The coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate. This autohardening is observed to be an inherent feature of the friction surfacing process and the only post-coating heat treatment required is tempering, as with traditionally hardened high-speed steels. The mechanism of autohardening is discussed in terms of the mechtrode/coating/substrate thermal system.

85 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ..., around 1200 C in the case of alloy 410) [15, 16, 19]....

    [...]

  • ...2b, friction surfaced deposits typically show lack of bonding at the deposit edges, due to material roll-over [13, 15]....

    [...]

Patent
04 Oct 2000
TL;DR: In this paper, friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape.
Abstract: Friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape. Monolithic or composite sheets, tapes and filaments can be consolidated using the approach. A system according to the invention includes a source of friction; a mechanism for applying a forging load between a feedstock power supply and a work surface; a work-head, which may have various configurations depending on the geometry of the feedstock to be used; a material feeding system; and a computer-controlled actuation system which controls the placement of material increments added to an object being built. A computer model of the object to be built is used to generate commands to produce the object additively and automatically. The approach provides a solid, freeform fabrication technique that requires no tooling, operates in the solid state, and creates a bond directly at the faying surfaces (i.e., acts only at the location where bonding/consolidation of the material increments is desired).

80 citations