scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Use of Friction Surfacing for Additive Manufacturing

05 Feb 2013-Materials and Manufacturing Processes (Taylor & Francis Group)-Vol. 28, Iss: 2, pp 189-194
TL;DR: In this paper, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single-and multi-track approaches, and samples with fully enclosed internal cavities were also successfully produced.
Abstract: In this work, we explore the possibility of utilizing friction surfacing, an emerging solid-state surface coating process, for layer-by-layer manufacture of three-dimensional metallic parts. One possibility in this regard (single-track friction surfacing) is to utilize friction surfacing for depositing a track or layer of material (sufficiently wide to cover the entire layer area), which is subsequently shaped to its corresponding slice counter using CNC machining. Another possibility (multi-track friction surfacing) is to generate a layer from multiple overlapping tracks of friction surfaced material, which is subsequently shaped as required using CNC machining. In the current work, sound multi-layered deposits in various ferrous materials were realized using friction surfacing in both single- and multi-track approaches. Samples with fully enclosed internal cavities and those consisting of different materials in different layers were also successfully produced. The deposits showed fine-grain wrought micr...
Citations
More filters
DOI
01 Jun 2015

7 citations


Cites background from "Use of Friction Surfacing for Addit..."

  • ...Friction surfacing, sometimes called friction surface welding, is a solid-state friction coating process which can be used to both additively manufacture whole parts and to repair damaged regions in existing metal and ceramic parts (Dilip et al, 2013)....

    [...]

  • ...The major advantage of this process is the possibility of quickly and cheaply welding dissimilar metals together with good mechanical properties (Dilip et al, 2013)....

    [...]

Book ChapterDOI
Sanjay Kumar1
01 Jan 2020
TL;DR: In this paper, the authors describe arc, cold spray and related additive manufacturing (AM) processes, such as gas tungsten arc welding based AM, gas metal arc welding-based AM and plasma arc weldingbased AM.
Abstract: It is essential to know arc before knowing arc based additive manufacturing (AM) processes such as gas tungsten arc welding based AM, gas metal arc welding based AM and plasma arc welding based AM. Similarly, it is essential to know cold spray before knowing cold spray based AM. This chapter attempts to describe arc, cold spray and related AM processes. There are friction based processes such as additive friction stir deposition and friction surfacing based AM – these are explained. Extrusion based processes based on both filament and pellet are given.

7 citations

Journal ArticleDOI
TL;DR: In this article, a localized electrochemical deposition (LECD) using liquid marbles and the feasibility of application of this method in additive manufacturing/microrepair is studied, which is a droplet of liquid coated with microparticles or nanoparticles.
Abstract: A liquid marble is a droplet of liquid coated with microparticles or nanoparticles. A novel method of localized electrochemical deposition (LECD) using liquid marbles and the feasibility of application of this method in additive manufacturing/microrepair is studied. Controllability of the transportation of liquid marbles to any desired location by pick and place technique has been demonstrated by depositing a 3 × 3 grid pattern with 1 mm period using an in-house built CNC setup. Electrodeposition experiments performed at defective spots with liquid marbles confirm the feasibility of microrepair using this novel technique.

7 citations

Journal ArticleDOI
TL;DR: In this paper, two additive manufacturing methods of fused deposition modeling (FDM) and laser-assisted laminated object manufacturing (LA-LOM) were used to fabricate CFRP plates with continuous carbon fiber reinforcement.
Abstract: Purpose Additively manufactured objects have layered structures, which means post processing is often required to achieve a desired surface finish. Furthermore, the additive nature of the process makes it less accurate than subtractive processes. Hence, additive manufacturing techniques could tremendously benefit from finishing processes to improve their geometric tolerance and surface finish. Design/methodology/approach Rotary ultrasonic machining (RUM) was chosen as a finishing operation for drilling additively manufactured carbon fiber reinforced polymer (CFRP) composites. Two distinct additive manufacturing methods of fused deposition modeling (FDM) and laser-assisted laminated object manufacturing (LA-LOM) were used to fabricate CFRP plates with continuous carbon fiber reinforcement. The influence of the feedrate, tool rotation speed and ultrasonic power of the RUM process parameters on the aforementioned quality characteristics revealed the feasibility of RUM process as a finishing operation for additive manufactured CFRP. Findings The quality of drilled holes in the CFRP plates fabricated via LA-LOM was supremely superior to the FDM counterparts with less pullout delamination, smoother surface and less burr formation. The strong interfacial bonding in LA-LOM proven to be superior to FDM was able to endure higher cutting force of the RUM process. The cutting force and cutting temperature overwhelmed the FDM parts and induced higher surface damage. Originality/value Overall, the present study demonstrates the feasibility of a hybrid additive and subtractive manufacturing method that could potentially reduce cost and waste of the CFRP production for industrial applications.

6 citations

References
More filters
Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ...Finally, part fabrication with these processes typically takes a very long time as the deposition rates are very low (less than 1 gram=minute) [2]....

    [...]

01 Apr 2007
TL;DR: The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy.
Abstract: Transactions of The Indian Institute of Metals is devoted to the publication of selected reviews on contemporary topics and original research articles that contribute to the advancement of ferrous and non-ferrous process metallurgy, materials engineering, physical, chemical and mechanical metallurgy, welding science and technology, surface engineering and characterisation, materials development, thermodynamics and kinetics, materials modelling and to other allied branches of metallurgy and materials engineering.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, and the coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate.
Abstract: This paper is concerned with the friction surfacing of high-speed steels, BM2, BT15 and ASP30 onto plain carbon steel plate. The events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, is described. The coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate. This autohardening is observed to be an inherent feature of the friction surfacing process and the only post-coating heat treatment required is tempering, as with traditionally hardened high-speed steels. The mechanism of autohardening is discussed in terms of the mechtrode/coating/substrate thermal system.

85 citations


"Use of Friction Surfacing for Addit..." refers background in this paper

  • ..., around 1200 C in the case of alloy 410) [15, 16, 19]....

    [...]

  • ...2b, friction surfaced deposits typically show lack of bonding at the deposit edges, due to material roll-over [13, 15]....

    [...]

Patent
04 Oct 2000
TL;DR: In this paper, friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape.
Abstract: Friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape. Monolithic or composite sheets, tapes and filaments can be consolidated using the approach. A system according to the invention includes a source of friction; a mechanism for applying a forging load between a feedstock power supply and a work surface; a work-head, which may have various configurations depending on the geometry of the feedstock to be used; a material feeding system; and a computer-controlled actuation system which controls the placement of material increments added to an object being built. A computer model of the object to be built is used to generate commands to produce the object additively and automatically. The approach provides a solid, freeform fabrication technique that requires no tooling, operates in the solid state, and creates a bond directly at the faying surfaces (i.e., acts only at the location where bonding/consolidation of the material increments is desired).

80 citations