scispace - formally typeset
Search or ask a question
Journal ArticleDOI

User Association for Load Balancing in Heterogeneous Cellular Networks

11 Apr 2013-IEEE Transactions on Wireless Communications (IEEE)-Vol. 12, Iss: 6, pp 2706-2716
TL;DR: In this paper, the authors provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and observe that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully.
Abstract: For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rate for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor Aj ≥ 1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully. Numerical results show a large (3.5x) throughput gain for cell-edge users and a 2x rate gain for median users relative to a maximizing received power association.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations

Journal ArticleDOI
TL;DR: The most important shifts in cellular technology in 10-20 years are distilled down to seven key factors, with the implications described and new models and techniques proposed for some, while others are ripe areas for future exploration.
Abstract: Imagine a world with more base stations than cell phones: this is where cellular technology is headed in 10-20 years. This mega-trend requires many fundamental differences in visualizing, modeling, analyzing, simulating, and designing cellular networks vs. the current textbook approach. In this article, the most important shifts are distilled down to seven key factors, with the implications described and new models and techniques proposed for some, while others are ripe areas for future exploration.

952 citations

Journal ArticleDOI
TL;DR: A baseline analytical approach based on stochastic geometry that allows the computation of the statistical distributions of the downlink signal-to-interference-plus-noise ratio (SINR) and also the per link data rate, which depends on the SINR as well as the average load is presented.
Abstract: We provide a comprehensive overview of mathematical models and analytical techniques for millimeter wave (mmWave) cellular systems. The two fundamental physical differences from conventional sub-6-GHz cellular systems are: 1) vulnerability to blocking and 2) the need for significant directionality at the transmitter and/or receiver, which is achieved through the use of large antenna arrays of small individual elements. We overview and compare models for both of these factors, and present a baseline analytical approach based on stochastic geometry that allows the computation of the statistical distributions of the downlink signal-to-interference-plus-noise ratio (SINR) and also the per link data rate, which depends on the SINR as well as the average load. There are many implications of the models and analysis: 1) mmWave systems are significantly more noise-limited than at sub-6 GHz for most parameter configurations; 2) initial access is much more difficult in mmWave; 3) self-backhauling is more viable than in sub-6-GHz systems, which makes ultra-dense deployments more viable, but this leads to increasingly interference-limited behavior; and 4) in sharp contrast to sub-6-GHz systems cellular operators can mutually benefit by sharing their spectrum licenses despite the uncontrolled interference that results from doing so. We conclude by outlining several important extensions of the baseline model, many of which are promising avenues for future research.

767 citations

Proceedings ArticleDOI
08 Jun 2015
TL;DR: In this article, the authors proposed a novel association algorithm and proved its superiority w.r.t. prior art by means of simulations that are based on Vodafone's small cell trial network and employing a high resolution pathloss prediction and realistic user distributions.
Abstract: Until the 4th Generation (4G) cellular 3GPP systems, a user equipment's (UE) cell association has been based on the downlink received power from the strongest base station. Recent work has shown that - with an increasing degree of heterogeneity in emerging 5G systems - such an approach is dramatically suboptimal, advocating for an independent association of the downlink and uplink where the downlink is served by the macro cell and the uplink by the nearest small cell. In this paper, we advance prior art by explicitly considering the cell-load as well as the available backhaul capacity during the association process. We introduce a novel association algorithm and prove its superiority w.r.t. prior art by means of simulations that are based on Vodafone's small cell trial network and employing a high resolution pathloss prediction and realistic user distributions. We also study the effect that different power control settings have on the performance of our algorithm.

756 citations

References
More filters
Book
01 Mar 2004
TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Abstract: Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

33,341 citations

Book
01 Jan 1989
TL;DR: This work discusses parallel and distributed architectures, complexity measures, and communication and synchronization issues, and it presents both Jacobi and Gauss-Seidel iterations, which serve as algorithms of reference for many of the computational approaches addressed later.
Abstract: gineering, computer science, operations research, and applied mathematics. It is essentially a self-contained work, with the development of the material occurring in the main body of the text and excellent appendices on linear algebra and analysis, graph theory, duality theory, and probability theory and Markov chains supporting it. The introduction discusses parallel and distributed architectures, complexity measures, and communication and synchronization issues, and it presents both Jacobi and Gauss-Seidel iterations, which serve as algorithms of reference for many of the computational approaches addressed later. After the introduction, the text is organized in two parts: synchronous algorithms and asynchronous algorithms. The discussion of synchronous algorithms comprises four chapters, with Chapter 2 presenting both direct methods (converging to the exact solution within a finite number of steps) and iterative methods for linear

5,597 citations

Journal ArticleDOI
TL;DR: An optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates to solve the dual problem using a gradient projection algorithm.
Abstract: We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.

2,101 citations

Journal ArticleDOI
TL;DR: The need for an alternative strategy, where low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network is discussed, and a high-level overview of the 3GPP LTE air interface, network nodes, and spectrum allocation options is provided, along with the enabling mechanisms.
Abstract: As the spectral efficiency of a point-to-point link in cellular networks approaches its theoretical limits, with the forecasted explosion of data traffic, there is a need for an increase in the node density to further improve network capacity. However, in already dense deployments in today's networks, cell splitting gains can be severely limited by high inter-cell interference. Moreover, high capital expenditure cost associated with high power macro nodes further limits viability of such an approach. This article discusses the need for an alternative strategy, where low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network. We survey current state of the art in heterogeneous deployments and focus on 3GPP LTE air interface to describe future trends. A high-level overview of the 3GPP LTE air interface, network nodes, and spectrum allocation options is provided, along with the enabling mechanisms for heterogeneous deployments. Interference management techniques that are critical for LTE heterogeneous deployments are discussed in greater detail. Cell range expansion, enabled through cell biasing and adaptive resource partitioning, is seen as an effective method to balance the load among the nodes in the network and improve overall trunking efficiency. An interference cancellation receiver plays a crucial role in ensuring acquisition of weak cells and reliability of control and data reception in the presence of legacy signals.

1,734 citations

Journal ArticleDOI
Abstract: Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given \sinr, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.

1,640 citations