scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Using chlorophyll fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the field

01 May 1999-Field Crops Research (Elsevier)-Vol. 61, Iss: 3, pp 201-210
TL;DR: Regression analyses revealed a strong relationship between mean crop growth rates and αcJe1200, supporting the idea that chlorophyll fluorescence can be used to assess photosynthetic performance of maize under field conditions.
About: This article is published in Field Crops Research.The article was published on 1999-05-01. It has received 51 citations till now. The article focuses on the topics: Chlorophyll fluorescence & Chlorophyll.
Citations
More filters
Journal ArticleDOI
TL;DR: The results are consistent with the tolerant-susceptible classification of these genotypes and indicate that these tools can be reliable in screening for drought tolerance, with F v/F m, SPAD index and LT having the added advantage of being nondestructive and easily and quickly assessed.
Abstract: Drought is one of the major limitations to plant productivity worldwide. Identifying suitable screening tools and quantifiable traits would facilitate the crop improvement process for drought tolerance. In the present study, we evaluated the ability of four relatively physiological parameters (variable-to-maximum chlorophyll a fluorescence ratio, F v/F m; estimated leaf chlorophyll content via SPAD index; leaf temperature, LT; and, leaf relative water content, RWC) to distinguish between drought tolerant and susceptible sugarcane genotypes subjected to a 90-d drought cycle. Eight field-grown genotypes were studied. By 45 d after the onset of treatments, the F v/F m, SPAD index and RWC of drought-stressed plants had declined significantly in all genotypes compared to values at the onset of well-watered treatments. However, the reductions were more severe in leaves of susceptible genotypes. Under drought stress, the tolerant genotypes as a group, maintained higher F v/F m (8%), SPAD index (15%), and RWC (16%) than susceptible genotypes. In general, LT of drought-stressed plants was higher (~4oC) than that of well-watered plants but the relative increase was greater among drought susceptible genotypes. Under drought stress, LT of tolerant genotypes was on average 2.2oC lower than that of susceptible genotypes. The results are consistent with the tolerant-susceptible classification of these genotypes and indicate that these tools can be reliable in screening for drought tolerance, with F v/F m, SPAD index and LT having the added advantage of being nondestructive and easily and quickly assessed.

306 citations


Cites background from "Using chlorophyll fluorometry to co..."

  • ...…have been shown to be reliable in distinguishing between drought tolerant and susceptible genotypes of some species such as sunflower (Gimenez et al., 1992), gas exchange techniques of assessing photosynthesis are laborious and not practical in crop improvement programs (Earl and Tollenaar, 1999)....

    [...]

Journal ArticleDOI
TL;DR: The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.
Abstract: Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.

299 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify yield losses attributable to each of these components for maize exposed to drought stress in a 2-yr field study, and examine the relationship between RUE at the single leaf level (estimated using chlorophyll fluorescence techniques) and radiation use efficiency (RUE), and reducing harvest index (HI).
Abstract: Drought stress reduces yield of maize (Zea mays L.) and other grain crops by (i) reducing canopy absorption of incident photosynthetically active radiation (PAR), (ii) reducing radiation use efficiency (RUE), and (iii) reducing harvest index (HI). The primary objective of this work was to quantify yield losses attributable to each of these components for maize exposed to drought stress in a 2-yr field study. A second objective was to examine the relationship between RUE at the single leaf level (estimated using chlorophyll fluorescence techniques) and RUE at the whole crop level. Two levels of soil water defidt and a control treatment were established using drip tape irrigation, and dry matter harvests were taken at midseason and at physiological maturity. Mild and severe water stress treatments reduced final grain yield by 63 and 85%, respectively, in 2000, and by 13 and 26%, respectively, in 2001. Reduction of intercepted PAR (IPAR) was generally a very minor yield loss component. Yield losses attributable to reduced RUE and reduced HI were of similar magnitude. Weekly chlorophyll fluorescence measurements were used to estimate the average quantum efficiency of photosystem II at a photosynthetic photon flux density of 1200 μmol m -2 s -1 (Φ II1200 ) for each plot. Crop dry matter accumulation was not linearly related to IPAR, due to decreased RUE in the water stress treatments. However, the linear relationship was restored when daily IPAR was multiplied by the current estimate of Φ II1200 , suggesting that Φ II1200 can be used as an indicator of whole-crop RUE.

294 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the biomass and leaf area index (LAI) accumulation, extinction coefficient, and RUE of maize (Zea mays L.) under conditions of optimal growth.
Abstract: Accurate measurement of crop growth and radiation use efficiency (RUE) under optimal growth conditions is required to predict plant dry matter accumulation and grain yield near the genetic growth potential. Research was conducted to quantify the biomass and leaf area index (LAI) accumulation, extinction coefficient, and RUE of maize (Zea mays L.) under conditions of optimal growth. Maize was grown in two environments over five growing seasons (1998-2002). Total aboveground biomass at maturity ranged from 2257 g m -2 in 1998 to 2916 g m -2 in 2001; values that are considerably greater than the biomass achieved in most previous studies on RUE in maize. Peak LAI ranged from 4.8 to 7.8. Maize extinction coefficients during vegetative growth (k) were within the range of recently published values (0.49 ± 0.03), with no clear pattern of differences in k among years. Seasonal changes in interception of photosynthetically active radiation (PAR) were similar across all but one year. Estimates of RUE were obtained using the short-interval crop growth rate method and the cumulative biomass and absorbed PAR (APAR) method. Values of RUE obtained using the two methods were 3.74 (±0.20) g MJ -1 APAR and 3.84 (±0.08) g MJ -1 APAR, respectively, and did not vary among years. This compares to a published mean RUE for maize of 3.3 g MJ -1 of intercepted PAR (Mitchell et al., 1998). Moreover, RUE did not decline during grain filling. Differences in biomass accumulation among years were attributed in part to differences in observed radiation interception, which varied primarily due to differences in LAI. Maize simulation models that rely on RUE for biomass accumulation should use an RUE of 3.8 g MJ -1 APAR for predicting optimum yields without growth limitations.

271 citations


Cites background from "Using chlorophyll fluorometry to co..."

  • ...5 are within the range of those commonly re-(IPAR) was lower throughout the measurement period ported in the literature (e.g., Earl and Tollenaar, 1999;in 1998 than the other 4 yr (Fig....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the quantum yield of non-cyclic electron transport was found to be directly proportional to the product of the photochemical fluorescence quenching (qQ) and the efficiency of excitation capture by open Photosystem II (PS II) reaction centres (Fv/Fm).

7,821 citations

Book
01 Jan 1989
TL;DR: The approach taken here is to use the popular two-component functional model whereby respiration is divided between growth and maintenance components, which is the most useful means of considering respiration as a quantitative component of a crop's carbon economy.
Abstract: Respiration is a large and important component of the carbon economy of crops. There are already several good books dealing with the biochemistry and physiol ogy of plant respiration, but there are none I know of that are devoted to the rela tionship between respiration and crop productivity, although this relationship is more and more frequently being studied with both experiment and simulation. Crop physiology books do cover respiration, of course, but the treatment is limited. The purpose of the present book is to fill this void in the literature. The approach taken here is to use the popular two-component functional model whereby respiration is divided between growth and maintenance components. Mter thoroughly reviewing the literature, I came to the conclusion that at present this is the most useful means of considering respiration as a quantitative compo nent of a crop's carbon economy. This functional distinction is used as the frame work for describing respiration and assessing its role in crop productivity. Discussions and critiques of the biochemistry and physiology of respiration serve primarily as a means of more fully understanding and describing the functional approach to studying crop respiration. It is assumed that the reader of this book is familiar with the fundamentals of plant physiology and biochemistry. The research worker in crop physiology should find this an up-to-date summary of crop respiration and the functional model of respiration. This book is not, however, a simple review of existing data."

524 citations

Journal ArticleDOI
TL;DR: The data demonstrate the potential of chlorophyll fluorescence measurements to analyse photosynthetic performance under field conditions with minimal disturbance of the plant.
Abstract: A newly developed portable chlorophyll fluorometer in combination with a special leaf clip holder was used for assessing photosynthetic activity of attached sun leaves of Fagus sylvatica and Cucurbita pepo under field conditions. During diurnal time courses, fluorescence yield, photosynthetic photon flux density (PPFD) incident on the leaf plane, and leaf temperature were measured and quantum efficiency of photosystem II (PS II), apparent relative electron transport rates, and non-photochemical fluorescence quenching (NPQ) calculated. In both species, quantum efficiency followed closely the incident PPFD and no hysteresis could be observed during the day. Apparent electron transport rate showed light saturation above a PPFD of 700 μmol m−2 s−1 in F. sylvatica, while in C. pepo no saturation was visible up to 1400 μmol m−2 s−1. NPQ was closely correlated to excessive PPFD calculated from the PS II quantum yield. Maximal NPQ observed was 3.3 Although the beech leaf was exposed for a considerable time to PPFD values of 1400–1500 μmol m−2 s−1 and leaf temperatures between 30 and 35°C, no obvious signs for sustained photodamage could be observed. The data demonstrate the potential of chlorophyll fluorescence measurements to analyse photosynthetic performance under field conditions with minimal disturbance of the plant. Potential error sources due to the geometry of the leaf clip holder used are discussed.

440 citations

Journal ArticleDOI
TL;DR: It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize.
Abstract: Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ( $$\phi _{CO_2 } $$ ) in maize over a wide range of conditions. The $${{\phi _{PSII} } \mathord{\left/ {\vphantom {{\phi _{PSII} } {\phi _{CO_2 } }}} \right. \kern- ulldelimiterspace} {\phi _{CO_2 } }}$$ ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize.

371 citations

Journal ArticleDOI
TL;DR: The optimum plant density for total grain yield increased from old to more recent hybrids, but the increase in optimum plantdensity did not continue for hybrids from the 1970s era to hybrids of the 1980s era.
Abstract: The optimum plant density for total grain yield increased from old to more recent hybrids, but the increase in optimum plant density did not continue for hybrids from the 1970s era to hybrids of the 1980s era. Approximately one-third of the genetic gain in machine-harvestable grain yield can be attributed to reduced stem lodging. A comparison of the oldest and most recent hybrids indicates that approximately 15% of the genetic gain in total grain yield can be attributed to increased harvest index. Consequently, increase in total dry matter accumulation attributed 85% to the genetic gain in total grain yield

248 citations