scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Utilization of sewage sludge in EU application of old and new methods—A review

01 Jan 2008-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 12, Iss: 1, pp 116-140
TL;DR: In this article, the authors review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Abstract: The European Union has made progress in dealing with municipal wastewater in individual countries and as a corporate entity. However, it intends to make still further and substantial progress over the next 15 years. Currently, the most widely available options in the EU are the agriculture utilization, the waste disposal sites, the land reclamation and restoration, the incineration and other novel uses. The selection of an option on a local basis reflects local or national, cultural, historical, geographical, legal, political and economic circumstances. The degree of flexibility varies from country to country. In any case sludge treatment and disposal should always be considered as an integral part of treatment of wastewater. There is a wide range of other uses for sludge, which exploit its energy or chemical content, namely the thermal processes. The present paper sought to review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the distribution of these elements in fly ash and APC residues was unequal and dependent on their melting temperature, which may indicate elevated amounts of some metallic or toxic elements (Fe, Zn, Pb, Sn, Au, Hg, Cd, As).

9 citations

Journal ArticleDOI
TL;DR: In this paper , Eisenia fetida was used to reduce heavy metal content in the sewage sludge (SS) amended soil and increase soil fertility in terms of soil nutrients content.

9 citations

Dissertation
28 Jul 2018
TL;DR: In this article, the authors explored the climate change mitigation benefits of changes in material use in the global paper life cycle and showed that full use of waste as a resource is not sufficient to meet the GHG targets for the paper life-cycle but strong decarbonization of energy inputs is.
Abstract: Human activity has greatly affected the natural environment. The production and consumption of materials and products have contributed to the destruction and degradation of ecosystems worldwide. Evidence suggests that we increasingly endanger the ability of the environment to support our way of life. Efficient use of materials (e.g. waste prevention) and circulation of materials (e.g. recycling) are widely acknowledged means to reduce the impacts of production and consumption. However, for many reasons, the efficient and circular use of materials is not sufficient to meet targets for environmental sustainability. To better understand this issue, the thesis explores the climate change mitigation benefits of changes in material use in the global paper life cycle. Efficient and circular use of materials is defined as the fulfilment of the potential of waste to be used as a resource and measured through a recovery potential indicator. A quantitative model describes material flows, energy flows, and GHG emissions of the global paper life cycle from 2012 to 2050. The emissions are compared with targets based on the carbon budget for staying below 2 degrees average global warming. The model scenarios reflect varying degrees of use of waste as a resource. The results show that full use of waste as a resource is not sufficient to meet the GHG targets for the paper life cycle but strong decarbonization of energy inputs is. In fact, increased recycling yields more emissions unless the decline in energy from combustible waste from virgin pulping is compensated for with low carbon fuels. The thesis concludes that the recovery potential indicator is suitable for analysing large material systems and may be used in public policy. To address climate change, guiding principles for material use need to consider the energy and carbon intensity of material processing and should be constantly evaluated.

9 citations

Journal ArticleDOI
TL;DR: In this article, a comparison study was carried out for 14 different sludge samples collected based on type, plant, and batch categorisation from all existing Water Reclamation Plants in Singapore.

9 citations

Journal ArticleDOI
Yu Sun1, Bao Sheng Jin1, Ya Ji Huang1, Wu Zuo1, Ji Qiang Jia1, Yan Yan Wang1 
TL;DR: In this paper, pyrolysis of sewage sludge for the fixed bed were investigated at different final temperatures (300-900 °C) to acquire distribution and characteristics of pyrolysis products.
Abstract: Pyrolysis of sewage sludge for the fixed bed were investigated at different final temperatures (300-900 °C) to acquire distribution and characteristics of pyrolysis products. The mass balance was established on base of continuous on-line measurement of gases and integration of gas compounds to give a more accurate reflection on the yields distribution. It was observed that at low temperatures the liquid was the main product with maximum yield of 57 wt%(daf) at 500°C and the gas composition was mainly CO2. Under the condition of a higher pyrolysis temperature (above 600°C), secondary reaction occurred among phase of solid, liquid and gas and generated more CO and H2. From the perspective of energy utilization and accumulation of heavy metals, a lower temperature no more than 600°C is suitable for sewage sludge pyrolysis.

9 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical procedure involving sequential chemicai extractions was developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, binding to Fe-Mn oxides and bound to organic matter.
Abstract: An analytical procedure involving sequential chemicai extractions has been developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter, and residual. Experimental results obtained on replicate samples of fluvial bottom sediments demonstrate that the relative standard deviation of the sequential extraction procedure Is generally better than =10%. The accuracy, evaluated by comparing total trace metal concentrations with the sum of the five Individual fractions, proved to be satisfactory. Complementary measurements were performed on the Individual leachates, and on the residual sediments following each extraction, to evaluate the selectivity of the various reagents toward specific geochemical phases. An application of the proposed method to river sediments is described, and the resulting trace metal speciation is discussed.

10,518 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Over the last decades, a great variety of extraction schemes, both simple and sequential have been developed and, although some methods have been widely used [12,13] none has been unreservedly accepted by the scientific community....

    [...]

Book
01 Jan 1972
TL;DR: Wastewater Engineering: An Overview of Wastewater Engineering, Methods and Implementation Considerations as mentioned in this paper is a good starting point for a discussion of the issues of wastewater engineering. But, it is not a complete survey of the entire literature.
Abstract: Wastewater Engineering: An Overview. Wastewater Flowrates. Wastewater Characteristics. Wastewater Treatment Objective, Methods, and Implementation Considerations. Introduction to Wastewater Treatment Plant Design. Physical Unit Operations. Chemical Unit Processes. Biological Unit Processes. Design of Facilities for Physical and Chemical Treatment of Wastewater. Design of Facilities for the Biological Treatment of Wastewater. Advanced Wastewater Treatment. Design of Facilities for the Treatment and Disposal of Sludge. Natural-Treatment Systems. Small Wastewater Treatment Systems. Management of Wastewater from Combined Sewers. Wastewater Reclamation and Reuse.

3,826 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current and future issues related to the combustion of sewage sludge is presented, and a number of technologies for thermal processing of sludge are discussed in three groups, i.e., mono-combustion, cocombustions and alternative processes.

1,026 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Multiple hearth and fluidized bed furnaces are the most popular and the latter is becoming widely applied [24]....

    [...]

  • ...Analysis has shown that about 78–98% of Cd, Cr, Cu, Ni, Pb and Zn present in the sewage sludge are retained in the ash, whereas up to 98% of the Hg may be released into the atmosphere with the flue gas [24]....

    [...]

  • ...The whole process is occurring in two distinctive regimes [24]:...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a standardization with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm, which is used to pin point major sources of metal pollution and to estimate the toxicity potential of dredged materials.
Abstract: Sediment analyses are used to pin‐point major sources of metal pollution and to estimate the toxicity potential of dredged materials on agricultural land. For source assessments (Part I of the present review) standardization is needed with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm. Further aspects include sampling methods, evaluation of background data and extent of anthropogenic metal enrichment.

530 citations