scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Utilization of sewage sludge in EU application of old and new methods—A review

01 Jan 2008-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 12, Iss: 1, pp 116-140
TL;DR: In this article, the authors review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Abstract: The European Union has made progress in dealing with municipal wastewater in individual countries and as a corporate entity. However, it intends to make still further and substantial progress over the next 15 years. Currently, the most widely available options in the EU are the agriculture utilization, the waste disposal sites, the land reclamation and restoration, the incineration and other novel uses. The selection of an option on a local basis reflects local or national, cultural, historical, geographical, legal, political and economic circumstances. The degree of flexibility varies from country to country. In any case sludge treatment and disposal should always be considered as an integral part of treatment of wastewater. There is a wide range of other uses for sludge, which exploit its energy or chemical content, namely the thermal processes. The present paper sought to review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of the significance of microplastics as a vector of waterborne contaminants in wastewater treatment plants is presented, and the transport of chemical and biological contaminants is also discussed in detail, using fundamental principles of vector relationships.
Abstract: Global studies of microplastic (MP) pollution confirm wastewater treatment plants serve as pathways for microplastics entering terrestrial and aquatic ecosystems. The behaviour, transport and fate of microplastics in wastewater effluents remain mostly unknown, rendering wastewater-derived microplastics as a contaminant of significant concern. We critically examine the literature to understand the sources and fate of microplastics in wastewater treatment plants (WWTPs) and the implications of treated effluents admitted to soil and aquatic systems. The transport of chemical and biological contaminants is also discussed in detail, using fundamental principles of vector relationships. For the removal and reduction of microplastics, profound knowledge is required from source to solution. This review presents a comprehensive overview of the significance of microplastics as a vector of water-borne contaminants in WWTPs.

103 citations

Journal ArticleDOI
TL;DR: This study presents the pH performance of six selected IX resins in extracting Cu2+, Fe2+, Pb2+ and Zn2+ from acetic, lactic and citric acid media simulated weak acid leachate to find the most effective method for extracting all metals from all media solutions.

102 citations

Journal ArticleDOI
TL;DR: In this article, an energy-efficient thermal treatment of sewage sludge is proposed, aimed at its use in blended cements, and the results of chemical tests show that the safe limit for the practical use of sludge as partial Portland cement replacement is 10%, which is mainly due to the relatively high content of chlorides and alkalis.

101 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of technological measures to increase the self-sufficiency of wastewater treatment plants (WWTPs), in particular for the largely diffused activated sludge-based WWTP.
Abstract: The present work provides an overview of technological measures to increase the self-sufficiency of wastewater treatment plants (WWTPs), in particular for the largely diffused activated sludge-based WWTP. The operation of WWTPs requires a large amount of electricity. Thermal energy is also required for heating the sludge and sometimes exsiccation of the digested sludge. On the other hand, the entering organic matter contained in the wastewater is a source of energy. Organic matter is recovered as sludge, which is digested in large stirred tanks (anaerobic digester) to produce biogas. The onsite availability of biogas represents a great opportunity to cover a significant share of WWTP electricity and thermal demands. Especially, biogas can be efficiently converted into electricity (and heat) via high temperature fuel cell generators. The final part of this work will report a case study based on the use of sewage biogas into a solid oxide fuel cell. However, the efficient biogas conversion in combined heat and power (CHP) devices is not sufficient. Self-sufficiency requires a combination of efficient biogas conversion, the maximization the yield of biogas from the organic substrate, and the minimization of the thermal duty connected to the preheating of the sludge feeding the anaerobic digester (generally achieved with pre-thickeners). Finally, the co-digestion of the organic fraction of municipal solid waste (OFMSW) into digesters treating sludge from WWTPs represent an additional opportunity for increasing the biogas production of existing WWTPs, thus helping the transition toward self-sufficient plants.

99 citations


Cites background from "Utilization of sewage sludge in EU ..."

  • ...Different literature works have analyzed this topic, from the environmental, energetic and legislative point of view (Fytili and Zabaniotou, 2008; Seadi et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the effect of steam to carbon ratio on syngas properties with specific focus on the amounts of syngga yield, synggas composition, hydrogen yield, energy yield, and apparent thermal efficiency.

99 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical procedure involving sequential chemicai extractions was developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, binding to Fe-Mn oxides and bound to organic matter.
Abstract: An analytical procedure involving sequential chemicai extractions has been developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter, and residual. Experimental results obtained on replicate samples of fluvial bottom sediments demonstrate that the relative standard deviation of the sequential extraction procedure Is generally better than =10%. The accuracy, evaluated by comparing total trace metal concentrations with the sum of the five Individual fractions, proved to be satisfactory. Complementary measurements were performed on the Individual leachates, and on the residual sediments following each extraction, to evaluate the selectivity of the various reagents toward specific geochemical phases. An application of the proposed method to river sediments is described, and the resulting trace metal speciation is discussed.

10,518 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Over the last decades, a great variety of extraction schemes, both simple and sequential have been developed and, although some methods have been widely used [12,13] none has been unreservedly accepted by the scientific community....

    [...]

Book
01 Jan 1972
TL;DR: Wastewater Engineering: An Overview of Wastewater Engineering, Methods and Implementation Considerations as mentioned in this paper is a good starting point for a discussion of the issues of wastewater engineering. But, it is not a complete survey of the entire literature.
Abstract: Wastewater Engineering: An Overview. Wastewater Flowrates. Wastewater Characteristics. Wastewater Treatment Objective, Methods, and Implementation Considerations. Introduction to Wastewater Treatment Plant Design. Physical Unit Operations. Chemical Unit Processes. Biological Unit Processes. Design of Facilities for Physical and Chemical Treatment of Wastewater. Design of Facilities for the Biological Treatment of Wastewater. Advanced Wastewater Treatment. Design of Facilities for the Treatment and Disposal of Sludge. Natural-Treatment Systems. Small Wastewater Treatment Systems. Management of Wastewater from Combined Sewers. Wastewater Reclamation and Reuse.

3,826 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current and future issues related to the combustion of sewage sludge is presented, and a number of technologies for thermal processing of sludge are discussed in three groups, i.e., mono-combustion, cocombustions and alternative processes.

1,026 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Multiple hearth and fluidized bed furnaces are the most popular and the latter is becoming widely applied [24]....

    [...]

  • ...Analysis has shown that about 78–98% of Cd, Cr, Cu, Ni, Pb and Zn present in the sewage sludge are retained in the ash, whereas up to 98% of the Hg may be released into the atmosphere with the flue gas [24]....

    [...]

  • ...The whole process is occurring in two distinctive regimes [24]:...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a standardization with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm, which is used to pin point major sources of metal pollution and to estimate the toxicity potential of dredged materials.
Abstract: Sediment analyses are used to pin‐point major sources of metal pollution and to estimate the toxicity potential of dredged materials on agricultural land. For source assessments (Part I of the present review) standardization is needed with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm. Further aspects include sampling methods, evaluation of background data and extent of anthropogenic metal enrichment.

530 citations