scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Utilization of sewage sludge in EU application of old and new methods—A review

01 Jan 2008-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 12, Iss: 1, pp 116-140
TL;DR: In this article, the authors review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Abstract: The European Union has made progress in dealing with municipal wastewater in individual countries and as a corporate entity. However, it intends to make still further and substantial progress over the next 15 years. Currently, the most widely available options in the EU are the agriculture utilization, the waste disposal sites, the land reclamation and restoration, the incineration and other novel uses. The selection of an option on a local basis reflects local or national, cultural, historical, geographical, legal, political and economic circumstances. The degree of flexibility varies from country to country. In any case sludge treatment and disposal should always be considered as an integral part of treatment of wastewater. There is a wide range of other uses for sludge, which exploit its energy or chemical content, namely the thermal processes. The present paper sought to review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an equipment based on pyrolysis and subsequent direct combustion of the Pyrolytic gases as energy supplier was developed to treat dry sewage sludge in China.

45 citations

Journal ArticleDOI
05 Jan 2021-Water
TL;DR: In this article, the current regulation on sludge agricultural use applied by many EU countries is compared, highlighting scarce harmonization of the legislative framework among Member States, and actual issues, such as the fate of emerging micropollutants and microplastics in sludge-amended soils, and public health concerns regarding sludge spreading during the COVID-19 epidemic, are considered, too.
Abstract: The agricultural use of good quality sludge represents a value-added route to ensure growth sustainability in Europe, where raw material availability, for example, for phosphorus, is insufficient to meet demand. However, the possible presence of pathogens, pharmaceuticals and heavy metals requires specific regulations to minimize sludge-related health issues and environmental risks. The current regulation on sludge agricultural use applied by many EU countries is here presented and compared, highlighting scarce harmonization of the legislative framework among Member States. Actual issues, such as the fate of emerging micropollutants and microplastics in sludge-amended soils, and public health concerns regarding sludge spreading during the COVID-19 epidemic, are considered, too.

45 citations


Cites background from "Utilization of sewage sludge in EU ..."

  • ...Thanks to the Landfill Directive, in fact, the sludge sent to landfill has remarkably decreased both in EU15 and in EU12, while the energy recovery by incineration and co-incineration is a diffuse route just in some EU-15 countries (Belgium, Germany, Netherland, Slovakia, Slovenia); those countries encounter high investment costs and diffuse social unacceptance [24]....

    [...]

  • ...The reuse of sewage sludge for agricultural purposes also faces additional constraints such as climate, seasons, and harvest, due to the fact that sludge is being produced all year round, whereas its application on land takes place once or twice a year during the good season [24]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that PFCs are persistent to sludge treatment and the loads in sludge may pose a future environmental risk, if not controlled.
Abstract: Perfluorinated compounds (PFCs) are persistent and bioaccumulative organic compounds used as additives in many industrial products. After use, these compounds enter wastewater treatment plants (WWTP) and long-chain PFCs are primarily accumulated in sludge. The aim of this study was to determine the occurrence and behavior of five PFCs in sludge from 15 WWTP from Spain and Germany that receive both urban and industrial wastes. The PFCs studied were perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), perfluorobutanesulfonate (PFBS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). One gram of freeze-dried, sieved, and homogenized sludge was extracted using an ultrasonic bath with methanol and glacial acetic acid. After that, the extract was recovered and evaporated to dryness with a TurboVap and then 1 mL of acetonitrile was added and the extract was cleaned up with black carbon. Liquid chromatography coupled to mass spectrometry operated in selected reaction monitoring was used to determine target compounds. Quality parameters are provided for the set of compounds studied. PFCs were detected in all samples. In Spanish sludge, ∑PFC ranged from 0.28 to 5.20 ng/g dry weight (dw) with prevalence of PFOS, while in German sludge, ∑PFC ranged from 20.7 to 38.6 ng/g dw and PFBS was the dominant compound. As a next step, the evolution of PFC concentrations within the sludge treatment steps (primary sludge, anaerobic digested sludge, and centrifuged sludge) was evaluated and differences among levels and patterns were observed and were attributed to the influent water quality and treatment used. Finally, we estimated the amount of PFCs discharged via sludge in order to determine the potential impact to the environment according to different sludge usage practices in the two regions investigated. This manuscript provided an intra-European overview of PFC distribution in sludge. Levels and compound distribution depend on the WWTP sampled. This study demonstrates that PFCs are persistent to sludge treatment and the loads in sludge may pose a future environmental risk, if not controlled.

45 citations


Cites background from "Utilization of sewage sludge in EU ..."

  • ...The use of sewage sludge must take into account the nutrient needs of plants, but should not compromise the quality of the soil or surface water and groundwater (Fytili and Zabaniotou 2008)....

    [...]

Journal ArticleDOI
Guanyu Jiang1, Donghai Xu1, Botian Hao1, Lu Liu1, Shuzhong Wang1, Zhiqiang Wu1 
TL;DR: In this paper, a comprehensive review of thermochemical treatment methods of municipal sludge, including combustion, pyrolysis, hydrothermal carbonization, Hydrothermal liquefaction, wet oxidation, supercritical water oxidation and gasification, is provided.

45 citations

Journal ArticleDOI
TL;DR: Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil and nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge.
Abstract: In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution.

45 citations


Cites background from "Utilization of sewage sludge in EU ..."

  • ...Hindawi Publishing Corporation Bioinorganic Chemistry and Applications Volume 2012, Article ID 173819, 11 pages doi:10.1155/2012/173819...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical procedure involving sequential chemicai extractions was developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, binding to Fe-Mn oxides and bound to organic matter.
Abstract: An analytical procedure involving sequential chemicai extractions has been developed for the partitioning of particulate trace metals (Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn) into five fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter, and residual. Experimental results obtained on replicate samples of fluvial bottom sediments demonstrate that the relative standard deviation of the sequential extraction procedure Is generally better than =10%. The accuracy, evaluated by comparing total trace metal concentrations with the sum of the five Individual fractions, proved to be satisfactory. Complementary measurements were performed on the Individual leachates, and on the residual sediments following each extraction, to evaluate the selectivity of the various reagents toward specific geochemical phases. An application of the proposed method to river sediments is described, and the resulting trace metal speciation is discussed.

10,518 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Over the last decades, a great variety of extraction schemes, both simple and sequential have been developed and, although some methods have been widely used [12,13] none has been unreservedly accepted by the scientific community....

    [...]

Book
01 Jan 1972
TL;DR: Wastewater Engineering: An Overview of Wastewater Engineering, Methods and Implementation Considerations as mentioned in this paper is a good starting point for a discussion of the issues of wastewater engineering. But, it is not a complete survey of the entire literature.
Abstract: Wastewater Engineering: An Overview. Wastewater Flowrates. Wastewater Characteristics. Wastewater Treatment Objective, Methods, and Implementation Considerations. Introduction to Wastewater Treatment Plant Design. Physical Unit Operations. Chemical Unit Processes. Biological Unit Processes. Design of Facilities for Physical and Chemical Treatment of Wastewater. Design of Facilities for the Biological Treatment of Wastewater. Advanced Wastewater Treatment. Design of Facilities for the Treatment and Disposal of Sludge. Natural-Treatment Systems. Small Wastewater Treatment Systems. Management of Wastewater from Combined Sewers. Wastewater Reclamation and Reuse.

3,826 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current and future issues related to the combustion of sewage sludge is presented, and a number of technologies for thermal processing of sludge are discussed in three groups, i.e., mono-combustion, cocombustions and alternative processes.

1,026 citations


"Utilization of sewage sludge in EU ..." refers background in this paper

  • ...Multiple hearth and fluidized bed furnaces are the most popular and the latter is becoming widely applied [24]....

    [...]

  • ...Analysis has shown that about 78–98% of Cd, Cr, Cu, Ni, Pb and Zn present in the sewage sludge are retained in the ash, whereas up to 98% of the Hg may be released into the atmosphere with the flue gas [24]....

    [...]

  • ...The whole process is occurring in two distinctive regimes [24]:...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a standardization with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm, which is used to pin point major sources of metal pollution and to estimate the toxicity potential of dredged materials.
Abstract: Sediment analyses are used to pin‐point major sources of metal pollution and to estimate the toxicity potential of dredged materials on agricultural land. For source assessments (Part I of the present review) standardization is needed with respect to grain size effects, commonly achieved by analyzing the sieve fraction <63μm. Further aspects include sampling methods, evaluation of background data and extent of anthropogenic metal enrichment.

530 citations