scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Vacuum polarization on topological black holes with Robin boundary conditions

08 Feb 2021-Physical Review D (American Physical Society (APS))-Vol. 103, Iss: 4, pp 045007
TL;DR: In this article, the renormalized vacuum polarization for a massless, conformally coupled scalar field on asymptotically anti-de Sitter black hole backgrounds is computed.
Abstract: We compute the renormalized vacuum polarization for a massless, conformally coupled scalar field on asymptotically anti--de Sitter black hole backgrounds. Mixed (Robin) boundary conditions are applied on the spacetime boundary. We consider black holes with nonspherical event horizon topology as well as spherical event horizons. The quantum scalar field is in the Hartle-Hawking state, and we employ Euclidean methods to calculate the renormalized expectation values. Far from the black hole, we find that the vacuum polarization approaches a finite limit, which is the same for all boundary conditions except Dirichlet boundary conditions.
Citations
More filters
01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the propagator in an exact form for a conformal scalar field in the asymptotically anti-de Sitter black hole spacetime so as to study the quantum effects of the scalar fields.
Abstract: Recently, Banados, Teitelboim and Zanelli obtained spherically symmetric black hole solutions in a particular class of Einstein--Lovelock gravity. We derive the propagator in an exact form for a conformal scalar field in the asymptotically anti-de Sitter black hole spacetime so as to study the quantum effects of the scalar fields. We treat the cases in odd dimensions in this paper. We calculate the vacuum expectation value of $\langle\varphi^2\rangle$ and show its dependence on the radial coordinate for the five-dimensional case as an example.

7 citations

Journal ArticleDOI
01 Apr 2022
TL;DR: In this paper , the authors consider the response of an Unruh-DeWitt detector near an extremal charged black hole, modeling the near-horizon region of this extremal spacetime by the Bertotti-Robinson spacetime.
Abstract: We consider the response of an Unruh-DeWitt detector near an extremal charged black hole, modeling the near-horizon region of this extremal spacetime by the Bertotti-Robinson spacetime. The advantage of employing the Bertotti-Robinson limit is that the two-point functions for a massless scalar field are obtainable in closed form for the field in a number of quantum states of interest. We consider the detector coupled to a massless field in both the Boulware vacuum state and arbitrary thermal states, including the Hartle-Hawking state, and analyze the detector's response for a broad range of trajectories. Particular attention is paid to the thermalization of the detector, the anti-Unruh and anti-Hawking effect.

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider a class of four-dimensional Lifshitz spacetimes with critical exponent $z = 2, including a hyperbolic and a spherical topological black hole, and use mode decomposition to split the equation of motion into a radial and into an angular component.
Abstract: On a class of four-dimensional Lifshitz spacetimes with critical exponent $z=2$, including a hyperbolic and a spherical Lifshitz topological black hole, we consider a real Klein-Gordon field. Using a mode decomposition, we split the equation of motion into a radial and into an angular component. As first step, we discuss under which conditions on the underlying parameters we can impose to the radial equation boundary conditions of Robin type and whether bound state solutions do occur. Subsequently, we show that, whenever bound states are absent, one can associate to each admissible boundary condition a ground and a KMS state whose associated two-point correlation function is of local Hadamard form.

2 citations

Journal ArticleDOI
01 Sep 2022-Universe
TL;DR: In this paper , the authors considered a vacuum polarization inside a galaxy in the eikonal approximation and found that two possible types of polarization exist, the first being described by the equation of state p=ρ/3, similar to radiation.
Abstract: We considered a vacuum polarization inside a galaxy in the eikonal approximation and found that two possible types of polarization exist. The first type is described by the equation of state p=ρ/3, similar to radiation. Using the conformally unimodular metric allows us to construct a non-singular solution for this vacuum “substance” if a compact astrophysical object exists in the galaxy’s center. As a result, a “dark” galactical halo appears that increases the rotation velocity of a test particle as a function of the distance from a galactic center. The second type of vacuum polarization has a more complicated equation of state. As a static physical effect, it produces the renormalization of the gravitational constant, thus, causing no static halo. However, a non-stationary polarization of the second type, resulting from an exponential increase (or decrease) of the galactic nuclei mass with time in some hypothetical time-dependent process, produces a gravitational potential, appearing similar to a dark matter halo.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,923 citations


"Vacuum polarization on topological ..." refers background in this paper

  • ...Quantum effects play a major role in black hole physics due to the emission of Hawking radiation [4, 5]....

    [...]

  • ...[5] S....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the holographic correspondence between field theories and string/M theory is discussed, focusing on the relation between compactifications of string theory on anti-de Sitter spaces and conformal field theories.

5,610 citations

Journal ArticleDOI
01 Mar 1974-Nature
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

4,511 citations

Journal ArticleDOI
TL;DR: The standard Einstein-Maxwell equations in 2+1 spacetime dimensions, with a negative cosmological constant, admit a black hole solution that appears as a negative energy state separated by a mass gap from the continuous black hole spectrum.
Abstract: The standard Einstein-Maxwell equations in 2+1 spacetime dimensions, with a negative cosmological constant, admit a black hole solution. The 2+1 black hole---characterized by mass, angular momentum, and charge, defined by flux integrals at infinity---is quite similar to its 3+1 counterpart. Anti--de Sitter space appears as a negative energy state separated by a mass gap from the continuous black hole spectrum. Evaluation of the partition function yields that the entropy is equal to twice the perimeter length of the horizon.

3,640 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations


"Vacuum polarization on topological ..." refers background in this paper

  • ...[4] S....

    [...]

  • ...Quantum effects play a major role in black hole physics due to the emission of Hawking radiation [4, 5]....

    [...]