scispace - formally typeset
Search or ask a question

Valence band splittings and band offsets of AlN, GaN and InN.

TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Abstract: First‐principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal‐field splitting parameters ΔCF of −217, 42, and 41 meV, respectively, and spin–orbit splitting parameters Δ0 of 19, 13, and 1 meV, respectively. In the zinc blende structure ΔCF≡0 and Δ0 are 19, 15, and 6 meV, respectively. The unstrained AlN/GaN, GaN/InN, and AlN/InN valence band offsets for the wurtzite (zinc blende) materials are 0.81 (0.84), 0.48 (0.26), and 1.25 (1.04) eV, respectively. The trends in these spectroscopic quantities are discussed and recent experimental findings are analyzed in light of these predictions.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices.
Abstract: Recent research results pertaining to InN, GaN and AlN are reviewed, focusing on the different growth techniques of Group III-nitride crystals and epitaxial films, heterostructures and devices. The chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices. The development of growth methods like metalorganic chemical vapour deposition and plasma-induced molecular beam epitaxy has resulted in remarkable improvements in the structural, optical and electrical properties. New developments in precursor chemistry, plasma-based nitrogen sources, substrates, the growth of nucleation layers and selective growth are covered. Deposition conditions and methods used to grow alloys for optical bandgap and lattice engineering are introduced. The review is concluded with a description of recent Group III-nitride semiconductor devices such as bright blue and white light-emitting diodes, the first blue-emitting laser, high-power transistors, and a discussion of further applications in surface acoustic wave devices and sensors.

1,386 citations

Journal ArticleDOI
TL;DR: In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Abstract: Wide-band-gap GaN and Ga-rich InGaN alloys, with energy gaps covering the blue and near-ultraviolet parts of the electromagnetic spectrum, are one group of the dominant materials for solid state lighting and lasing technologies and consequently, have been studied very well. Much less effort has been devoted to InN and In-rich InGaN alloys. A major breakthrough in 2002, stemming from much improved quality of InN films grown using molecular beam epitaxy, resulted in the bandgap of InN being revised from 1.9 eV to a much narrower value of 0.64 eV. This finding triggered a worldwide research thrust into the area of narrow-band-gap group-III nitrides. The low value of the InN bandgap provides a basis for a consistent description of the electronic structure of InGaN and InAlN alloys with all compositions. It extends the fundamental bandgap of the group III-nitride alloy system over a wider spectral region, ranging from the near infrared at ∼1.9 μm (0.64 eV for InN) to the ultraviolet at ∼0.36 μm (3.4 eV for GaN...

871 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub ng/g/ng/s/n g/n/g n/g 1.x/n, is presented, which includes all of the major scattering mechanisms.
Abstract: We present a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub x/Ga/sub 1-x/N. Calculations are made using a nonparabolic effective mass energy band model. Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models. The effects of alloy scattering on the electron transport physics are examined. The steady state velocity field curves and low field mobilities are calculated for representative compositions of these alloys at different temperatures and ionized impurity concentrations. A field dependent mobility model is provided for both ternary compounds AlGaN and InGaN. The parameters for the low and high field mobility models for these ternary compounds are extracted and presented. The mobility models can be employed in simulations of devices that incorporate the ternary III-nitrides.

421 citations


Cites methods from "Valence band splittings and band of..."

  • ...The conduction band offsets have been calculated from the difference of the energy gaps using the known valence band offsets [52]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices.
Abstract: Recent research results pertaining to InN, GaN and AlN are reviewed, focusing on the different growth techniques of Group III-nitride crystals and epitaxial films, heterostructures and devices. The chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices. The development of growth methods like metalorganic chemical vapour deposition and plasma-induced molecular beam epitaxy has resulted in remarkable improvements in the structural, optical and electrical properties. New developments in precursor chemistry, plasma-based nitrogen sources, substrates, the growth of nucleation layers and selective growth are covered. Deposition conditions and methods used to grow alloys for optical bandgap and lattice engineering are introduced. The review is concluded with a description of recent Group III-nitride semiconductor devices such as bright blue and white light-emitting diodes, the first blue-emitting laser, high-power transistors, and a discussion of further applications in surface acoustic wave devices and sensors.

1,386 citations

Journal ArticleDOI
TL;DR: In this paper, the bandgap of InN was revised from 1.9 eV to a much narrower value of 0.64 eV, which is the smallest bandgap known to date.
Abstract: Wide-band-gap GaN and Ga-rich InGaN alloys, with energy gaps covering the blue and near-ultraviolet parts of the electromagnetic spectrum, are one group of the dominant materials for solid state lighting and lasing technologies and consequently, have been studied very well. Much less effort has been devoted to InN and In-rich InGaN alloys. A major breakthrough in 2002, stemming from much improved quality of InN films grown using molecular beam epitaxy, resulted in the bandgap of InN being revised from 1.9 eV to a much narrower value of 0.64 eV. This finding triggered a worldwide research thrust into the area of narrow-band-gap group-III nitrides. The low value of the InN bandgap provides a basis for a consistent description of the electronic structure of InGaN and InAlN alloys with all compositions. It extends the fundamental bandgap of the group III-nitride alloy system over a wider spectral region, ranging from the near infrared at ∼1.9 μm (0.64 eV for InN) to the ultraviolet at ∼0.36 μm (3.4 eV for GaN...

871 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub ng/g/ng/s/n g/n/g n/g 1.x/n, is presented, which includes all of the major scattering mechanisms.
Abstract: We present a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub x/Ga/sub 1-x/N. Calculations are made using a nonparabolic effective mass energy band model. Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models. The effects of alloy scattering on the electron transport physics are examined. The steady state velocity field curves and low field mobilities are calculated for representative compositions of these alloys at different temperatures and ionized impurity concentrations. A field dependent mobility model is provided for both ternary compounds AlGaN and InGaN. The parameters for the low and high field mobility models for these ternary compounds are extracted and presented. The mobility models can be employed in simulations of devices that incorporate the ternary III-nitrides.

421 citations