scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Value-added food: Single cell protein

01 Oct 2000-Biotechnology Advances (Elsevier)-Vol. 18, Iss: 6, pp 459-479
TL;DR: In this paper, the authors reviewed diversified aspects of single cell protein (SCP) as an alternative protein-supplementing source and discussed Nutritive value and removal of nucleic acids and toxins from SCP as a protein supplementing source.
About: This article is published in Biotechnology Advances.The article was published on 2000-10-01. It has received 556 citations till now. The article focuses on the topics: Food processing.
Citations
More filters
Journal ArticleDOI
TL;DR: Environmental and economic benefits that biotechnology can offer in manufacturing, monitoring and waste management are highlighted and the following benefits include: greatly reduced dependence on nonrenewable fuels and other resources; reduced potential for pollution of industrial processes and products.

662 citations

Journal ArticleDOI
TL;DR: This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle and focuses on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Abstract: Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

363 citations

Journal ArticleDOI
TL;DR: The properties of biologically active compounds extracted from the biomass of algae reported in the literature are presented in a structured way and a list of applications of algal extracts in different developing branches of agriculture (biostimulants, bioregulators, feed additives) and in pharmaceutical industry is assembled.
Abstract: Algal extracts are gaining increasing interest due to their unique composition and possibilities of wide industrial applications. Various extraction techniques are used for conversion of algal biomass into extracts. Recently, attention of scientists has been paid to novel methods, such as enzyme-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and ultrasound-assisted extraction, which enable the extraction of biologically active compounds without their degradation. In this review, the properties of biologically active compounds extracted from the biomass of algae reported in the literature are presented in a structured way. Algal extracts contain compounds such as carbohydrates, proteins, minerals, oil, fats, polyunsaturated fatty acids as well as bioactive compounds such as antioxidants (polyphenols, tocopherols [vitamin E], vitamin C, mycosporine-like amino acids), and pigments, such as carotenoids (carotene xanthophyll), chlorophylls, and phycobilins (phycocyanin, phycoerythrin), which possess antibacterial, antiviral, antifungal, antioxidative, anti-inflammatory, and antitumor properties. Finally, we assemble a list of applications of algal extracts in different developing branches of agriculture (biostimulants, bioregulators, feed additives) and in pharmaceutical industry.

354 citations

Journal ArticleDOI
TL;DR: The following review addresses the latest developments in SCP production from various organisms, giving an overview of commercial exploitation, a review of recent advances in the patent landscape (2001–2016), and a list of industrial players in the SCP field.
Abstract: By 2050, the world would need to produce 1,250 million tonnes of meat and dairy per year to meet global demand for animal-derived protein at current consumption levels. However, growing demand for protein will not be met sustainably by increasing meat and dairy production because of the low efficiency of converting feed to meat and dairy products. New solutions are needed. Single cell protein (SCP), i.e., protein produced in microbial and algal cells, is an option with potential. Much of the recent interest in SCP has focused on the valorisation of side streams by using microorganisms to improve their protein content, which can then be used in animal feed. There is also increased use of mixed populations, rather than pure strains in the production of SCP. In addition, the use of methane as a carbon source for SCP is reaching commercial scales and more protein-rich products are being derived from algae for both food and feed. The following review addresses the latest developments in SCP production from various organisms, giving an overview of commercial exploitation, a review of recent advances in the patent landscape (2001-2016) and a list of industrial players in the SCP field.

345 citations

Journal ArticleDOI
TL;DR: In comparing the economic efficiency of energy to biomass, the use of red LED gave the most effective performance for the photoautotrophic cultivation of Spirulina platensis.

315 citations

References
More filters
Book
01 Jan 1973

2,462 citations

Book
01 Jan 1994
TL;DR: Solid-state fermentation has emerged as a potential technology for the production of microbial products such as feed, fuel, food, industrial chemicals and pharmaceutical products and with continuity in current trends, SSF technology would be well developed at par with submerged fermentation technology in times to come.
Abstract: Solid-state fermentation has emerged as a potential technology for the production of microbial products such as feed, fuel, food, industrial chemicals and pharmaceutical products. Its application in bioprocesses such as bioleaching, biobeneficiation, bioremediation, biopulping, etc. has offered several advantages. Utilisation of agro-industrial residues as substrates in SSF processes provides an alternative avenue and value-addition to these otherwise under- or non-utilised residues. Today with better understanding of biochemical engineering aspects, particularly on mathematical modelling and design of bioreactors (fermenters), it is possible to scale up SSF processes and some designs have been developed for commercialisation. It is hoped that with continuity in current trends, SSF technology would be well developed at par with submerged fermentation technology in times to come.

1,431 citations

Book
01 Jan 1981
TL;DR: This handbook of toxic fungal metabolites that can be your partner is this proper and easy way to gain knowledge about this life, about the world.
Abstract: As known, adventure and experience about lesson, entertainment, and knowledge can be gained by only reading a book. Even it is not directly done, you can know more about this life, about the world. We offer you this proper and easy way to gain those all. We offer many book collections from fictions to science at all. One of them is this handbook of toxic fungal metabolites that can be your partner.

804 citations

Journal ArticleDOI
TL;DR: It is indicated that production of trichothecenes can enhance the severity of disease caused by Fusarium species on some plant hosts, and genetic evidence that several trICHothecene biosynthetic genes are organized in a gene cluster is discussed.

416 citations

Journal ArticleDOI
TL;DR: DNA hybridization of the aflR gene with genomic digests of seven polyketide-producing fungi revealed similar sequences in three other species related to A. flavus: A. parasiticus, A. oryzae, and A. sojae, suggesting that the a flR locus involves some form of antisense regulation.
Abstract: Aflatoxins belong to a family of decaketides that are produced as secondary metabolites by Aspergillus flavus and A. parasiticus. The aflatoxin biosynthetic pathway involves several enzymatic steps that appear to be regulated by the afl2 gene in A. flavus and the apa2 gene in A. parasiticus. Several lines of evidence indicate that these two genes are homologous. The DNA sequences of the two genes are highly similar, they both are involved in the regulation of aflatoxin biosynthesis, and apa2 can complement the afl2 mutation in A. flavus. Because of these similarities, we propose that these two genes are homologs, and because of the ability of these genes to regulate aflatoxin biosynthesis, we suggest that they be designated aflR. We report here the further characterization of aflR from A. flavus and show that aflR codes for a 2,078-bp transcript with an open reading frame of 1,311 nucleotides that codes for 437 amino acids and a putative protein of 46,679 daltons. Analysis of the predicted amino acid sequence indicated that the polypeptide contains a zinc cluster motif between amino acid positions 29 and 56. This region contains the consensus sequence Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6+ ++-Cys. This motif has been found in several fungal transcriptional regulatory proteins. DNA hybridization of the aflR gene with genomic digests of seven polyketide-producing fungi revealed similar sequences in three other species related to A. flavus: A. parasiticus, A. oryzae, and A. sojae. Finally, we present evidence for an antisense transcript (aflRas) derived from the opposite strand of aflR, suggesting that the aflR locus involves some form of antisense regulation.

301 citations