scispace - formally typeset
Open AccessJournal ArticleDOI

Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

Reads0
Chats0
TLDR
The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
Abstract
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Gate-tunable room-temperature ferromagnetism in two-dimensional Fe 3 GeTe 2 .

TL;DR: It is found that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy, which opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
Journal ArticleDOI

Colloquium : Excitons in atomically thin transition metal dichalcogenides

TL;DR: In this article, the authors reviewed recent progress in understanding of the excitonic properties in monolayer transition metal dichalcogenides (TMDs) and future challenges are laid out.
Journal ArticleDOI

Two-dimensional magnetic crystals and emergent heterostructure devices

TL;DR: Recognizing that magnetic anisotropy can be used to induce stable magnetism in atomic monolayers, Gong and Zhang provide an overview of the materials available and the physical understanding of the effects and then discuss how these effects could be exploited for widespread practical applications.
Journal ArticleDOI

Magnetism in two-dimensional van der Waals materials.

TL;DR: These cleavable materials provide the ideal platform for exploring magnetism in the two-dimensional limit, where new physical phenomena are expected, and represent a substantial shift in the authors' ability to control and investigate nanoscale phases.
Journal Article

Gate-tunable Room-temperature Ferromagnetism in Two-dimensional Fe 3 GeTe 2

TL;DR: In this paper, it was shown that the itinerant ferromagnetic order persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]

TL;DR: For the molecules Be2, F2, and P2 of Table I, the unrestricted Hartree-Fock solution breaks the singlet spin symmetry, even though the density functional solutions do not.
Related Papers (5)