scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Variations in the Earth's Orbit: Pacemaker of the Ice Ages

10 Dec 1976-Science (American Association for the Advancement of Science)-Vol. 194, Iss: 4270, pp 1121-1132
TL;DR: It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages and a model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.
Abstract: 1) Three indices of global climate have been monitored in the record of the past 450,000 years in Southern Hemisphere ocean-floor sediments. 2) Over the frequency range 10(-4) to 10(-5) cycle per year, climatic variance of these records is concentrated in three discrete spectral peaks at periods of 23,000, 42,000, and approximately 100,000 years. These peaks correspond to the dominant periods of the earth's solar orbit, and contain respectively about 10, 25, and 50 percent of the climatic variance. 3) The 42,000-year climatic component has the same period as variations in the obliquity of the earth's axis and retains a constant phase relationship with it. 4) The 23,000-year portion of the variance displays the same periods (about 23,000 and 19,000 years) as the quasi-periodic precession index. 5) The dominant, 100,000-year climatic [See table in the PDF file] component has an average period close to, and is in phase with, orbital eccentricity. Unlike the correlations between climate and the higher-frequency orbital variations (which can be explained on the assumption that the climate system responds linearly to orbital forcing), an explanation of the correlation between climate and eccentricity probably requires an assumption of nonlinearity. 6) It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 7) A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.
Citations
More filters
Journal ArticleDOI
27 Apr 2001-Science
TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Abstract: Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

8,903 citations

Journal ArticleDOI
TL;DR: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences.
Abstract: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences. (1) Recent palaeoclimatic information indicate rapid global reversals and changes in ranges of species which would involve elimination with spreading from the edge. Leading edge colonization during a rapid expansion would be leptokurtic and lead to homozygosity and spatial assortment of genomes. In Europe and North America, ice age contractions were into southern refugia, which would promote genome reorganization. (2) The present day genetic structure of species shows frequent geographic subdivision, with parapatric genomes, hybrid zones and suture zones. A survey of recent DNA phylogeographic information supports and extends earlier work. (3) The grasshopperChorthippus parallelusis used to illustrate such data and processes. Its range in Europe is divided on DNA sequences into five parapatric races, with southern genomes showing greater haplotype diversity — probably due to southern mountain blocks acting as refugia and northern expansion reducing diversity. (4) Comparison with other recent studies shows a concordance of such phylogeographic data over pleistocene time scales. (5) The role that ice age range changes may have played in changing adaptations is explored, including the limits of range, rapid change in new invasions and refugial differentiation in a variety of organisms. (6) The effects of these events in causing divergence and speciation are explored usingChorthippusas a paradigm. Repeated contraction and expansion would accumulate genome differences and adaptations, protected from mixing by hybrid zones, and such a composite mode of speciation could apply to many organisms.

3,850 citations

Journal ArticleDOI
TL;DR: In this article, new values for the astronomical parameters of the Earth's orbit and rotation (eccentricity, obliquity and precession) are proposed for paleoclimatic research related to the Late Miocene, the Pliocene and the Quaternary.

3,712 citations

Journal ArticleDOI
TL;DR: Using the concept of "orbital tuning", a continuous, high-resolution deep-sea chronostratigraphy has been developed spanning the last 300,000 yr as mentioned in this paper.

3,256 citations

Journal ArticleDOI
TL;DR: In this article, a new solution for the astronomical computation of the insolation quantities on Earth spanning from −250 m to 250 m was presented, where the most regular components of the orbital solution could still be used over a much longer time span, which is why they provided here the solution over 250 m.
Abstract: We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. [CITE]) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. [CITE]), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about 0.38 degree in the next few millions of years, due to the crossing of the resonance (Laskar et al. [CITE]). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to , with a fixed frequency of /yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about , and over the full Mesozoic era.

2,992 citations


Cites background or methods from "Variations in the Earth's Orbit: Pa..."

  • ...The computations of Vernekar were actually used by Hays et al. (1976)....

    [...]

  • ...The revival of the Milankovitch theory of paleoclimate can be related to the landmark work of Hays et al. (1976), that established a correlation between astronomical forcing and the δ18O records over the past 500 kyr....

    [...]

References
More filters
Book
01 Jan 1971
TL;DR: A revised and expanded edition of this classic reference/text, covering the latest techniques for the analysis and measurement of stationary and nonstationary random data passing through physical systems, is presented in this article.
Abstract: From the Publisher: A revised and expanded edition of this classic reference/text, covering the latest techniques for the analysis and measurement of stationary and nonstationary random data passing through physical systems. With more than 100,000 copies in print and six foreign translations, the first edition standardized the methodology in this field. This new edition covers all new procedures developed since 1971 and extends the application of random data analysis to aerospace and automotive research; digital data analysis; dynamic test programs; fluid turbulence analysis; industrial noise control; oceanographic data analysis; system identification problems; and many other fields. Includes new formulas for statistical error analysis of desired estimates, new examples and problem sets.

6,693 citations

Book
01 Jan 1968
TL;DR: In this paper, Spectral Analysis and its Applications, the authors present a set of applications of spectral analysis and its application in the field of spectroscopy, including the following:
Abstract: (1970). Spectral Analysis and its Applications. Technometrics: Vol. 12, No. 1, pp. 174-175.

4,220 citations

Book
01 Jan 1965
TL;DR: This book is very referred for you because it gives not only the experience but also lesson, it is about this book that will give wellness for all people from many societies.
Abstract: Where you can find the bmd biomedical computer programs easily? Is it in the book store? On-line book store? are you sure? Keep in mind that you will find the book in this site. This book is very referred for you because it gives not only the experience but also lesson. The lessons are very valuable to serve for you, that's not about who are reading this bmd biomedical computer programs book. It is about this book that will give wellness for all people from many societies.

2,585 citations


"Variations in the Earth's Orbit: Pa..." refers methods in this paper

  • ...a Hamming lag window, spectral estimation, scaling, and statistical evaluation (57, 58)....

    [...]

  • ...Calculations in steps iii through viii were carried out with a BMDO2T program (58) modified by Y....

    [...]

  • ...All of our filter calculations were carried out with a BMDOIT program (58)....

    [...]

Journal ArticleDOI
TL;DR: The core Vema 28-238 as discussed by the authors preserves an excellent oxygen isotope and magnetic stratigraphy and is shown to contain undisturbed sediments deposited continuously through the past 870,000 yr.

2,515 citations

Journal ArticleDOI
01 Dec 1976-Tellus A
TL;DR: In this article, a stochastic model of climate variability is considered in which slow changes of climate are explained as the integral response to continuous random excitation by short period "weather" disturbances.
Abstract: A stochastic model of climate variability is considered in which slow changes of climate are explained as the integral response to continuous random excitation by short period “weather” disturbances. The coupled ocean-atmosphere-cryosphere-land system is divided into a rapidly varying “weather” system (essentially the atmosphere) and a slowly responding “climate” system (the ocean, cryosphere, land vegetation, etc.). In the usual Statistical Dynamical Model (SDM) only the average transport effects of the rapidly varying weather components are parameterised in the climate system. The resultant prognostic equations are deterministic, and climate variability can normally arise only through variable external conditions. The essential feature of stochastic climate models is that the non-averaged “weather” components are also retained. They appear formally as random forcing terms. The climate system, acting as an integrator of this short-period excitation, exhibits the same random-walk response characteristics as large particles interacting with an ensemble of much smaller particles in the analogous Brownian motion problem. The model predicts “red” variance spectra, in qualitative agreement with observations. The evolution of the climate probability distribution is described by a Fokker-Planck equation, in which the effect of the random weather excitation is represented by diffusion terms. Without stabilising feedback, the model predicts a continuous increase in climate variability, in analogy with the continuous, unbounded dispersion of particles in Brownian motion (or in a homogeneous turbulent fluid). Stabilising feedback yields a statistically stationary climate probability distribution. Feedback also results in a finite degree of climate predictability, but for a stationary climate the predictability is limited to maximal skill parameters of order 0.5. DOI: 10.1111/j.2153-3490.1976.tb00696.x

1,586 citations