scispace - formally typeset
Search or ask a question
Journal Article

Vector quantization

01 Apr 1984-IEEE Assp Magazine-pp 75-100
TL;DR: During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes.
Abstract: A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity of the data. The mapping for each vector may or may not have memory in the sense of depending on past actions of the coder, just as in well established scalar techniques such as PCM, which has no memory, and predictive quantization, which does. Even though information theory implies that one can always obtain better performance by coding vectors instead of scalars, scalar quantizers have remained by far the most common data compression system because of their simplicity and good performance when the communication rate is sufficiently large. In addition, relatively few design techniques have existed for vector quantizers. During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes. It is the purpose of this article to survey some of these design techniques and their applications.
Citations
More filters
Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
01 Sep 1990
TL;DR: The self-organizing map, an architecture suggested for artificial neural networks, is explained by presenting simulation experiments and practical applications, and an algorithm which order responses spatially is reviewed, focusing on best matching cell selection and adaptation of the weight vectors.
Abstract: The self-organized map, an architecture suggested for artificial neural networks, is explained by presenting simulation experiments and practical applications. The self-organizing map has the property of effectively creating spatially organized internal representations of various features of input signals and their abstractions. One result of this is that the self-organization process can discover semantic relationships in sentences. Brain maps, semantic maps, and early work on competitive learning are reviewed. The self-organizing map algorithm (an algorithm which order responses spatially) is reviewed, focusing on best matching cell selection and adaptation of the weight vectors. Suggestions for applying the self-organizing map algorithm, demonstrations of the ordering process, and an example of hierarchical clustering of data are presented. Fine tuning the map by learning vector quantization is addressed. The use of self-organized maps in practical speech recognition and a simulation experiment on semantic mapping are discussed. >

7,883 citations

Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed and it is shown that the wavelet transform is particularly well adapted to progressive transmission.
Abstract: A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed. This method involves two steps. First, a wavelet transform used in order to obtain a set of biorthogonal subclasses of images: the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required to describe the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vector quantized using a multiresolution codebook. To encode the wavelet coefficients, a noise shaping bit allocation procedure which assumes that details at high resolution are less visible to the human eye is proposed. In order to allow the receiver to recognize a picture as quickly as possible at minimum cost, a progressive transmission scheme is presented. It is shown that the wavelet transform is particularly well adapted to progressive transmission. >

3,925 citations

Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations


Cites methods from "Vector quantization"

  • ...Suitable codebooks for FBB can be designed using Lloyd’s algorithm on a training set of baseband precoders and using the chordal distance as a distance measure [75]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

01 Jan 1967
TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Abstract: The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special

24,320 citations

Journal ArticleDOI
TL;DR: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data.
Abstract: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data. The basic properties of the algorithm are discussed and demonstrated by examples. Quite general distortion measures and long blocklengths are allowed, as exemplified by the design of parameter vector quantizers of ten-dimensional vectors arising in Linear Predictive Coded (LPC) speech compression with a complicated distortion measure arising in LPC analysis that does not depend only on the error vector.

7,935 citations

Journal ArticleDOI
Allen Gersho1
TL;DR: A heuristic argument generalizing Bennett's formula to block quantization where a vector of random variables is quantized is given, leading to a rigorous method for obtaining upper bounds on the minimum distortion for block quantizers.
Abstract: In 1948 W. R. Bennett used a companding model for nonuniform quantization and proposed the formula D \: = \: \frac{1}{12N^{2}} \: \int \: p(x) [ E(x) ]^{-2} \dx for the mean-square quantizing error where N is the number of levels, p (x) is the probability density of the input, and E \prime (x) is the slope of the compressor curve. The formula, an approximation based on the assumption that the number of levels is large and overload distortion is negligible, is a useful tool for analytical studies of quantization. This paper gives a heuristic argument generalizing Bennett's formula to block quantization where a vector of random variables is quantized. The approach is again based on the asymptotic situation where N , the number of quantized output vectors, is very large. Using the resulting heuristic formula, an optimization is performed leading to an expression for the minimum quantizing noise attainable for any block quantizer of a given block size k . The results are consistent with Zador's results and specialize to known results for the one- and two-dimensional cases and for the case of infinite block length (k \rightarrow \infty) . The same heuristic approach also gives an alternate derivation of a bound of Elias for multidimensional quantization. Our approach leads to a rigorous method for obtaining upper bounds on the minimum distortion for block quantizers. In particular, for k = 3 we give a tight upper bound that may in fact be exact. The idea of representing a block quantizer by a block "compressor" mapping followed with an optimal quantizer for uniformly distributed random vectors is also explored. It is not always possible to represent an optimal quantizer with this block companding model.

936 citations

Journal ArticleDOI
TL;DR: The vector quantizing approach is shown to be a mathematically and computationally tractable method which builds upon knowledge obtained in linear prediction analysis studies and is introduced in a nonrigorous form.
Abstract: With rare exception, all presently available narrow-band speech coding systems implement scalar quantization (independent quantization) of the transmission parameters (such as reflection coefficients or transformed reflection coefficients in LPC systems). This paper presents a new approach called vector quantization. For very low data rates, realistic experiments have shown that vector quantization can achieve a given level of average distortion with 15 to 20 fewer bits/frame than that required for the optimized scalar quantizing approaches presently in use. The vector quantizing approach is shown to be a mathematically and computationally tractable method which builds upon knowledge obtained in linear prediction analysis studies. This paper introduces the theory in a nonrigorous form, along with practical results to date and an extensive list of research topics for this new area of speech coding.

754 citations