scispace - formally typeset
Search or ask a question
Book

Vehicle Dynamics: Theory and Application

04 Nov 2009-
TL;DR: In this paper, the authors describe the tire and rim dynamics of a quarter car, including the following: forward vehicle dynamics, tire dynamics, vehicle roll dynamics, and vehicle vibration.
Abstract: Tire and rim fundamentals.- Forward vehicle dynamics.- Tire dynamics.- Driveline dynamics.- Applied kinematics.- Applied mechanisms.- Steering dynamics.- Suspension mechanisms.- Applied dynamics.- Vehicle planar dynamics.- vehicle roll dynamics.- Applied vibrations.- Vehicle vibrations.- suspension optimization.- Quarter car.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The novel concept of the loss of driver controllability is introduced here, and traditional comfort measures are examined and autonomous passenger awareness factors are proposed and path-planning methods are categorized in light of the offered factors.
Abstract: The prospect of driverless cars wide-scale deployment is imminent owing to the advances in robotics, computational power, communications, and sensor technologies. This promises highway fatality reductions and improvements in traffic and fuel efficiency. Our understanding of the effects arising from commuting in autonomous cars is still limited. The novel concept of the loss of driver controllability is introduced here. It requires a reassessment of vehicle's comfort criteria. In this review paper, traditional comfort measures are examined and autonomous passenger awareness factors are proposed. We categorize path-planning methods in light of the offered factors. The objective of the review presented in this article is to highlight the gap in path planning from a passenger comfort perspective and propose some research solutions. It is expected that this investigation will generate more research interest and bring innovative solutions into this field.

252 citations

Journal ArticleDOI
TL;DR: A novel fault-tolerant (FT) robust linear quadratic regulator (LQR)-based H∞ controller using the LPV method to preserve stability and improve handling of a four-wheel independently actuated electric ground vehicle in spite of in-wheel motors and/or steering system faults is proposed.
Abstract: This paper presents a linear parameter-varying (LPV) control strategy to preserve stability and improve handling of a four-wheel independently actuated electric ground vehicle in spite of in-wheel motors and/or steering system faults. Different types of actuator faults including loss-of-effectiveness fault, additive fault, and the fault makes an actuator's control effect stuck-at-fixed-level, are considered simultaneously. To attenuate the effects of disturbance and address the challenging problem, a novel fault-tolerant (FT) robust linear quadratic regulator (LQR)-based $H_{\infty}$ controller using the LPV method is proposed. With the LQR-based $H_{\infty}$ control, the tradeoff between the tracking performance and the control input energy is achieved, and the effect from the external disturbance to the controlled outputs is minimized. The eigenvalue positions of the system matrix of the closed-loop system are also incorporated to tradeoff between the control inputs and the transient responses. The vehicle states, including vehicle yaw rate, lateral and longitudinal velocities, are simultaneously controlled to track their respective references. Simulations for different fault types and various driving scenarios are carried out with a high-fidelity, CarSim®, full-vehicle model. Simulation results show the effectiveness of the proposed FT control approach.

195 citations


Cites background or methods from "Vehicle Dynamics: Theory and Applic..."

  • ...To simplify the controller design, a bicycle model [23] shown in Fig....

    [...]

  • ...The front and rear lateral forces can be modeled as [23]...

    [...]

Journal ArticleDOI
TL;DR: A game theory-based lane-changing model, which mimics human behavior by interacting with surrounding drivers using the turn signal and lateral moves, and which outperforms fixed rule-based controllers in both Simulink and dSPACE.
Abstract: Lane changing is a critical task for autonomous driving, especially in heavy traffic. Numerous automatic lane-changing algorithms have been proposed. However, surrounding vehicles are usually treated as moving obstacles without considering the interaction between vehicles/drivers. This paper presents a game theory-based lane-changing model, which mimics human behavior by interacting with surrounding drivers using the turn signal and lateral moves. The aggressiveness of the surrounding vehicles/drivers is estimated based on their reactions. With this model, the controller is capable of extracting information and learning from the interaction in real time. As such, the optimal timing and acceleration for changing lanes with respect to a variety of aggressiveness in target lane vehicle behavior are found accordingly. The game theory-based controller was tested in Simulink and dSPACE. Scenarios were designed so that a vehicle controlled by a game theory-based controller could interact with vehicles controlled by both robot and human drivers. Test results show that the game theory-based controller is capable of changing lanes in a human-like manner and outperforms fixed rule-based controllers.

193 citations

Journal ArticleDOI
TL;DR: In this paper, a new method for detecting a multi-cracked beam-like structure subjected to a moving vehicle is presented, where the dynamic response of the bridge-vehicle system is measured directly from the moving vehicle.

126 citations

Journal ArticleDOI
TL;DR: The proposed shared control framework is established from a novel cooperative trajectory planning algorithm and a fuzzy steering controller and allows reducing effectively the driver–automation conflict issue while offering the driver more freedom to swerve within a predefined lane.
Abstract: This paper addresses the driver–automation shared driving control for lane keeping and obstacle avoidance of automated vehicles in highway traffic. The proposed shared control framework is established from a novel cooperative trajectory planning algorithm and a fuzzy steering controller. Based on polynomial functions, the cooperative trajectory planning is formulated by judiciously exploiting the information on the maneuver decision, the conflict management, and the driver monitoring. As a result, the planned trajectory of the vehicle is continuously adapted according to the driver's actions and intentions. By means of Lyapunov stability arguments, sufficient conditions in terms of linear matrix inequalities are given to design a Takagi–Sugeno fuzzy model-based controller. This robust steering controller provides a necessary assistive torque to track the planned vehicle trajectory. The new shared driving control framework allows reducing effectively the driver–automation conflict issue while offering the driver more freedom to swerve within a predefined lane. The advantages of the proposed approach are evaluated using both objective and subjective results, experimentally obtained from several human drivers and an advanced interactive dynamic driving simulator.

95 citations


Cites background from "Vehicle Dynamics: Theory and Applic..."

  • ...The admissible curvature to respect the minimal Ackerman’s steering radius is defined as follows [32]:...

    [...]

References
More filters
Book
22 Mar 1994
TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Abstract: INTRODUCTION: Brief History. Multifingered Hands and Dextrous Manipulation. Outline of the Book. Bibliography. RIGID BODY MOTION: Rigid Body Transformations. Rotational Motion in R3. Rigid Motion in R3. Velocity of a Rigid Body. Wrenches and Reciprocal Screws. MANIPULATOR KINEMATICS: Introduction. Forward Kinematics. Inverse Kinematics. The Manipulator Jacobian. Redundant and Parallel Manipulators. ROBOT DYNAMICS AND CONTROL: Introduction. Lagrange's Equations. Dynamics of Open-Chain Manipulators. Lyapunov Stability Theory. Position Control and Trajectory Tracking. Control of Constrained Manipulators. MULTIFINGERED HAND KINEMATICS: Introduction to Grasping. Grasp Statics. Force-Closure. Grasp Planning. Grasp Constraints. Rolling Contact Kinematics. HAND DYNAMICS AND CONTROL: Lagrange's Equations with Constraints. Robot Hand Dynamics. Redundant and Nonmanipulable Robot Systems. Kinematics and Statics of Tendon Actuation. Control of Robot Hands. NONHOLONOMIC BEHAVIOR IN ROBOTIC SYSTEMS: Introduction. Controllability and Frobenius' Theorem. Examples of Nonholonomic Systems. Structure of Nonholonomic Systems. NONHOLONOMIC MOTION PLANNING: Introduction. Steering Model Control Systems Using Sinusoids. General Methods for Steering. Dynamic Finger Repositioning. FUTURE PROSPECTS: Robots in Hazardous Environments. Medical Applications for Multifingered Hands. Robots on a Small Scale: Microrobotics. APPENDICES: Lie Groups and Robot Kinematics. A Mathematica Package for Screw Calculus. Bibliography. Index Each chapter also includes a Summary, Bibliography, and Exercises

6,592 citations

Book
31 Oct 2005
TL;DR: In this paper, the authors present a mean value model of SI and Diesel engines, and design and analysis of passive and active automotive suspension components, as well as semi-active and active suspensions.
Abstract: 1. Introduction.- 2.Lateral Vehicle Dynamics.- 3. Steering Control For Automated Lane Keeping.- 4. Longitudinal Vehicle Dynamics.- 5. Introduction to Longitudinal Control.- 6. Adaptive Cruise Control.- 7. Longitudinal Control for Vehicle Platoons.- 8. Electronic Stability Control.- 9. Mean Value Modeling Of SI and Diesel Engines.- 10. Design and Analysis of Passive Automotive Suspensions.- 11. Active Automotive Suspensions.-12. Semi-Active Suspensions.- 13. Lateral and Longitudinal Tires Forces.- 14. Tire-Road Friction Measurement on Highway Vehicles.- 15. Roll Dynamics and Rollover Prevention.- 16. Dynamics and Control of Hybrid Gas Electric Vehicles.

3,669 citations

Book
13 Dec 1978
TL;DR: In this article, the authors present an approach to the prediction of normal pressure distribution under a track and a simplified method for analysis of tracked vehicle performance, based on the Cone Index.
Abstract: Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. Conversion Factors. Nomenclature. Introduction. 1. MECHANICS OF PNEUMATIC TIRES. 1.1 Tire Forces and Moments. 1.2 Rolling Resistance of Tires. 1.3 Tractive (Braking) Effort and Longitudinal Slip (Skid). 1.4 Cornering Properties of Tires. 1.4.1 Slip Angle and Cornering Force. 1.4.2 Slip Angle and Aligning Torque. 1.4.3 Camber and Camber Thrust. 1.4.4 Characterization of Cornering Behavior of. Tires. 1.5 Performance of Tires on Wet Surfaces. 1.6 Ride Properties of Tires. References. Problems. 2. MECHANICS OF VEHICLE-TERRAIN INTERACTION--TERRAMECHANICS. 2.1 Distribution of Stresses in the Terrain Under Vehicular Loads. 2.2 Applications of the Theory of Plastic Equilibrium to the Mechanics of Vehicle--Terrain Interaction. 2.3 Empirical Methods for Predicting Off-Road Vehicle Performance. 2.3.1 Empirical Methods Based on the Cone Index. 2.3.2 Empirical Methods Based on the Mean Maximum Pressure. 2.4 Measurement and Characterization of Terrain Response. 2.4.1 Characterization of Pressure-Sinkage Relationship. 2.4.2 Characterization of the Response to Repetitive Loading. 2.4.3 Characterization of the Shear Stress-Shear Displacement Relationship. 2.5 A Simplified Method for Analysis of Tracked Vehicle Performance. 2.5.1 Motion Resistance of a Track. 2.5.2 Tractive Effort and Slip of a Track. 2.6 A Computer-Aided Method for Evaluating the Performance of Vehicles with Flexible Tracks. 2.6.1 Approach to the Prediction of Normal Pressure Distribution under a Track. 2.6.2 Approach to the Prediction of Shear Stress Distribution under a Track. 2.6.3 Prediction of Motion Resistance and Drawbar Pull as Functions of Track Slip. 2.6.4 Experimental Substantiation. 2.6.5 Applications to Parametric Analysis and Design Optimization. 2.7 A Computer-Aided Method for Evaluating the Performance of Vehicles with Long-Pitch Link Tracks. 2.7.1 Basic Approach. 2.7.2 Experimental Substantiation. 2.7.3 Applications to Parametric Analysis and Design Optimization. 2.8 Methods for Parametric Analysis of Wheeled Vehicle Performance. 2.8.1 Motion Resistance of a Rigid Wheel. 2.8.2 Motion Resistance of a Pneumatic Tire. 2.8.3 Tractive Effort and Slip of a Wheel. 2.9 A Computer-Aided Method for Evaluating the Performance of Off-Road Wheeled Vehicles. 2.9.1 Basic Approach. 2.9.2 Experimental Substantiation. 2.9.3 Applications to Parametric Analysis. 2.10 Finite Element and Discrete Element Methods for the Study of Vehicle-Terrain Interaction. 2.10.1 The Finite Element Method. 2.10.2 The Discrete (Distinct) Element Method. References. Problems. 3. PERFORMANCE CHARACTERISTICS OF ROAD VEHICLES. 3.1 Equation of Motion and Maximum Tractive Effort. 3.2 Aerodynamic Forces and Moments. 3.3 Vehicle Power Plant and Transmission Characteristics. 3.3.1 Internal Combustion Engines. 3.3.2 Electric Drives. 3.3.3 Hybrid Drives. 3.3.4 Fuel Cells. 3.3.5 Transmission Characteristics. 3.4 Vehicle Power Plant and Transmission Characteristics. 3.4.1 Power Plant Characteristics. 3.4.2 Transmission Characteristics. 3.5 Prediction of Vehicle Performance. 3.5.1 Acceleration Time and Distance. 3.5.2 Gradability. 3.6 Operating Fuel Economy. 3.7 Engine and Transmission Matching. 3.8 Braking Performance. 3.8.1 Braking Characteristics of a Two-Axle. Vehicle. 3.8.2 Braking Efficiency and Stopping Distance. 3.8.3 Braking Characteristics of a Tractor-Semitrailer. 3.8.4 Antilock Brake Systems. 3.8.5 Traction Control Systems. References. Problems. 4. PERFORMANCE CHARACTERISTICS OF OFF-ROAD VEHICLES. 4.1 Drawbar Performance. 4.1.1 Drawbar Pull and Drawbar Power. 4.1.2 Tractive Efficiency. 4.1.3 Four Wheel Drive. 4.1.5 Coefficient of Traction. 4.1.4 Weight-to-Power Ratio for Off-Road Vehicles. 4.2 Fuel Economy of Cross-Country Operations. 4.3 Transport Productivity and Transport Efficiency. 4.4 Mobility Map and Mobility Profile. 4.5 Selection of Vehicle Configurations for Off-Road Operations. References. Problems. 5. HANDLING CHARACTERISTICS OF ROAD VEHICLES. 5.1 Steering Geometry. 5.2 Steady-State Handling Characteristics of a Two-Axle Vehicle. 5.2.1 Neutral Steer. 5.2.2 Understeer. 5.2.3 Oversteer. 5.3 Steady-State Response to Steering Input. 5.3.1 Yaw Velocity Response. 5.3.2 Lateral Acceleration Response. 5.3.3 Curvature Response. 5.4 Testing of Handling Characteristics. 5.4.1 Constant Radius Test. 5.4.2 Constant Speed Test. 5.4.3 Constant Steer Angle Test. 5.5 Transient Response Characteristics. 5.6 Directional Stability. 5.6.1 Criteria for Directional Stability. 5.6.2 Vehicle Stability Control. 5.7 Steady-State Handling Characteristics of a Tractor-Semitrailer. 5.8 Simulation Models for the Directional Behavior of Articulated Road Vehicles. References. Problems. 6. STEERING OF TRACKED VEHICLES. 6.1 Simplified Analysis of the Kinetics of Skid-Steering. 6.2 Kinematics of Skid-Steering. 6.3 Skid-Steering at High Speeds. 6.4 A General Theory for Skid-Steering on Firm Ground. 6.4.1 Shear Displacement on the Track-Ground Interface. 6.4.2 Kinetics in a Steady-State Turning Maneuver. 6.4.3 Experimental Substantiation. 6.4.4 Coefficient of Lateral Resistance. 6.5 Power Consumption of Skid-Steering. 6.6 Steering Mechanisms for Tracked Vehicles. 6.6.1 Clutch/Brake Steering System. 6.6.2 Controlled Differential Steering System. 6.6.3 Planetary Gear Steering System. 6.7 Articulated Steering. References. Problems. 7. VEHICLE RIDE CHARACTERISTICS. 7.1 Human Response to Vibration. 7.1.1 International Standard ISO 2631-1:1985. 7.1.2 International Standard ISO 2631-1:1997. 7.2 Vehicle Ride Models. 7.2.1 Two-Degree-of-Freedom Vehicle Model for Sprung and Unsprung Mass. 7.2.2 Numerical Methods for Determining the Response of a Quarter-Car Model to Irregular Surface Profile Excitation. 7.2.3 Two-Degree-of-Freedom Vehicle Model for Pitch and Bounce. 7.3 Introduction to Random Vibration. 7.3.1 Surface Elevation Profile as a Random Function. 7.3.2 Frequency Response Function. 7.3.3 Evaluation of Vehicle Vibration in Relation to the Ride Comfort Criterion. 7.4 Active and Semi-Active Suspensions. References. Problems. 8. INTRODUCTION TO AIR-CUSHION VEHICLES. 8.1 Air-Cushion Systems and Their Performance. 8.1.1 Plenum Chamber. 8.1.2 Peripheral Jet. 8.2 Resistance of Air-Cushion Vehicles. 8.3 Suspension Characteristics of Air-Cushion Systems. 8.3.1 Heave (or Bounce) Stiffness. 8.3.2 Roll Stiffness. 8.4 Directional Control of Air-Cushion Vehicles. References. Problems. Index.

2,930 citations

Book
01 Jan 1978
TL;DR: The components of mechanism freedom and structure in mechanism elementary planar and spatial displacements planar algebraic curves infinitesimal planar kinematics planar displacements through three and more locations the four-bar linkage - coupler curves the geometrical capability of planar mechanisms three-dimensional geometry and spatial mechanism some spatial mechanisms line geometry, and spatial mechanisms screw systems screw systems applied to spatial mechanisms body guidance in three dimensions manipulator-arms and other linkageconnections.
Abstract: The components of mechanism freedom and structure in mechanism elementary planar and spatial displacements planar algebraic curves infinitesimal planar kinematics planar displacements through three and more locations the four-bar linkage - coupler curves the geometrical capability of planar mechanisms three-dimensional geometry and spatial mechanism some spatial mechanisms line geometry and spatial mechanism screw systems screw systems applied to spatial mechanisms body guidance in three dimensions manipulator-arms and other linkage-connections.

1,836 citations

Book
01 Oct 2003
TL;DR: Analytical Mechanics of Space Systems, Third Edition as discussed by the authors provides a comprehensive treatment of dynamics of space systems, starting with the fundamentals and covering topics from basic kinematics and dynamics to more advanced celestial mechanics.
Abstract: Analytical Mechanics of Space Systems, Third Edition provides a comprehensive treatment of dynamics of space systems, starting with the fundamentals and covering topics from basic kinematics and dynamics to more advanced celestial mechanics. The reader is guided through the various derivations and proofs in a tutorial way and is led to understand the principles underlying the equations at issue, and shown how to apply them to various dynamical systems. Part I covers analytical treatment of topics such as basic dynamic principles up to advanced energy concepts. Special attention is paid to the use of rotating reference frames that often occur in aerospace systems. Part II covers basic celestial mechanics, treating the two-body problem, restricted three-body problem, gravity field modeling, perturbation methods, spacecraft formation flying, and orbit transfers. MATLAB[registered], Mathematica[registered], Python and C-Code toolboxes are provided for the rigid body kinematics routines discussed in chapter 3, and the basic orbital 2-body orbital mechanics routines discussed in chapter 9. The third edition streamlines the presentation of material by adding additional examples, homework problems, and illustrations. It includes expanded discussion on: Numerically integrating MRPs and using heading measurements and evaluating a three-dimensional orientation; Numerically integrating the complex VSCMG differential equations of motion; The Lyapunov function and stability definitions; implementing a rate-based attitude servo control solution, and integrating an integral feedback component with a reaction wheel based attitude control, featuring new examples; developing acceleration-based VSCMG steering laws for three-axis attitude control developments; and, new Appendix I describes how to implement Kalman-Filter estimating MRP coordinates in a non-singular fashion.

1,338 citations