scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

04 Sep 2014-
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Posted Content
TL;DR: This article examined the effect of overfitting and influence on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks.
Abstract: Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to an attacker, either through the models' structure or their observable behavior. However, the underlying cause of this privacy risk is not well understood beyond a handful of anecdotal accounts that suggest overfitting and influence might play a role. This paper examines the effect that overfitting and influence have on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks. Using both formal and empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular machine learning algorithms. We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute meets certain conditions about its influence, attribute inference attacks. Interestingly, our formal analysis also shows that overfitting is not necessary for these attacks and begins to shed light on what other factors may be in play. Finally, we explore the connection between membership inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks.

299 citations

Book ChapterDOI
08 Sep 2018
TL;DR: In this article, a large-scale video object segmentation dataset called YouTube Video Object Segmentation dataset (YouTube-VOS) was built to explore long-term spatial-temporal features for video segmentation.
Abstract: Learning long-term spatial-temporal features are critical for many video analysis tasks However, existing video segmentation methods predominantly rely on static image segmentation techniques, and methods capturing temporal dependency for segmentation have to depend on pretrained optical flow models, leading to suboptimal solutions for the problem End-to-end sequential learning to explore spatial-temporal features for video segmentation is largely limited by the scale of available video segmentation datasets, ie, even the largest video segmentation dataset only contains 90 short video clips To solve this problem, we build a new large-scale video object segmentation dataset called YouTube Video Object Segmentation dataset (YouTube-VOS) Our dataset contains 3,252 YouTube video clips and 78 categories including common objects and human activities (This is the statistics when we submit this paper, see updated statistics on our website) This is by far the largest video object segmentation dataset to our knowledge and we have released it at https://youtube-vosorg Based on this dataset, we propose a novel sequence-to-sequence network to fully exploit long-term spatial-temporal information in videos for segmentation We demonstrate that our method is able to achieve the best results on our YouTube-VOS test set and comparable results on DAVIS 2016 compared to the current state-of-the-art methods Experiments show that the large scale dataset is indeed a key factor to the success of our model

298 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: This work focuses on deep convolutional neural networks and demonstrates that adversaries can easily craft adversarial examples even without any internal knowledge of the target network, and proposes schemes that could serve as a litmus test for designing robust networks.
Abstract: Deep neural networks are powerful and popular learning models that achieve state-of-the-art pattern recognition performance on many computer vision, speech, and language processing tasks. However, these networks have also been shown susceptible to crafted adversarial perturbations which force misclassification of the inputs. Adversarial examples enable adversaries to subvert the expected system behavior leading to undesired consequences and could pose a security risk when these systems are deployed in the real world.,,,,,, In this work, we focus on deep convolutional neural networks and demonstrate that adversaries can easily craft adversarial examples even without any internal knowledge of the target network. Our attacks treat the network as an oracle (black-box) and only assume that the output of the network can be observed on the probed inputs. Our attacks utilize a novel local-search based technique to construct numerical approximation to the network gradient, which is then carefully used to construct a small set of pixels in an image to perturb. We demonstrate how this underlying idea can be adapted to achieve several strong notions of misclassification. The simplicity and effectiveness of our proposed schemes mean that they could serve as a litmus test for designing robust networks.

298 citations


Cites methods from "Very Deep Convolutional Networks fo..."

  • ...We trained Networkin-Network [15] and VGG [25] for MNIST, CIFAR, SVHN, STL10, with minor adjustments for the corresponding image sizes....

    [...]

  • ...VGG is another powerful network that proved to be useful in many applications beyond image classification, like object localization [23]....

    [...]

  • ...For the ImageNet1000 dataset, we used pretrained VGG models from [5]....

    [...]

  • ...All Caffe VGG models were converted to Torch models using the loadcaffe package [30]....

    [...]

  • ...In particular in this paper, we consider the CIFAR10, MNIST, SVHN, STL10, and ImageNet1000 datasets, and two popular network architectures, Networkin-Network [15] and VGG [25]....

    [...]

Proceedings ArticleDOI
Sungsoo Ahn1, Shell Xu Hu, Andreas Damianou2, Neil D. Lawrence2, Zhenwen Dai2 
15 Jun 2019
TL;DR: In this article, the authors propose an information-theoretic framework for knowledge transfer which formulates knowledge transfer as maximizing the mutual information between the teacher and the student networks, and compare their method with existing knowledge transfer methods on both knowledge distillation and transfer learning tasks and show that their method consistently outperforms existing methods.
Abstract: Transferring knowledge from a teacher neural network pretrained on the same or a similar task to a student neural network can significantly improve the performance of the student neural network. Existing knowledge transfer approaches match the activations or the corresponding hand-crafted features of the teacher and the student networks. We propose an information-theoretic framework for knowledge transfer which formulates knowledge transfer as maximizing the mutual information between the teacher and the student networks. We compare our method with existing knowledge transfer methods on both knowledge distillation and transfer learning tasks and show that our method consistently outperforms existing methods. We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10. The resulting MLP significantly outperforms the-state-of-the-art methods and it achieves similar performance to the CNN with a single convolutional layer.

298 citations

Posted Content
Yin Cui1, Menglin Jia2, Tsung-Yi Lin1, Yang Song2, Serge Belongie1 
TL;DR: In this article, the effective number of samples is defined as the volume of samples and can be calculated by a simple formula, where n is the number of observations and β is a hyperparameter.
Abstract: With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

297 citations

References
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations

Posted Content
TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.

9,803 citations

Journal ArticleDOI
TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Abstract: The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.

9,775 citations

Journal ArticleDOI
TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Abstract: The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this paper we provide a review of the challenge from 2008---2012. The paper is intended for two audiences: algorithm designers, researchers who want to see what the state of the art is, as measured by performance on the VOC datasets, along with the limitations and weak points of the current generation of algorithms; and, challenge designers, who want to see what we as organisers have learnt from the process and our recommendations for the organisation of future challenges. To analyse the performance of submitted algorithms on the VOC datasets we introduce a number of novel evaluation methods: a bootstrapping method for determining whether differences in the performance of two algorithms are significant or not; a normalised average precision so that performance can be compared across classes with different proportions of positive instances; a clustering method for visualising the performance across multiple algorithms so that the hard and easy images can be identified; and the use of a joint classifier over the submitted algorithms in order to measure their complementarity and combined performance. We also analyse the community's progress through time using the methods of Hoiem et al. (Proceedings of European Conference on Computer Vision, 2012) to identify the types of occurring errors. We conclude the paper with an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.

6,061 citations