scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

Reads0
Chats0
TLDR
This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Posted Content

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

TL;DR: An extremely computation-efficient CNN architecture named ShuffleNet is introduced, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs), to greatly reduce computation cost while maintaining accuracy.
Posted Content

Learning Structured Sparsity in Deep Neural Networks

TL;DR: The results show that for CIFAR-10, regularization on layer depth can reduce 20 layers of a Deep Residual Network to 18 layers while improve the accuracy from 91.25% to 92.60%, which is still slightly higher than that of original ResNet with 32 layers.
Book ChapterDOI

Image Inpainting for Irregular Holes Using Partial Convolutions

TL;DR: This work proposes the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels, and outperforms other methods for irregular masks.
Posted Content

Convolutional Two-Stream Network Fusion for Video Action Recognition

TL;DR: In this paper, a spatial and temporal network can be fused at the last convolution layer without loss of performance, but with a substantial saving in parameters, and furthermore, pooling of abstract convolutional features over spatiotemporal neighbourhoods further boosts performance.
Journal ArticleDOI

Road Extraction by Deep Residual U-Net

TL;DR: A semantic segmentation neural network, which combines the strengths of residual learning and U-Net, is proposed for road area extraction, which outperforms all the comparing methods and demonstrates its superiority over recently developed state of the arts methods.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Fully Convolutional Networks for Semantic Segmentation

TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Journal ArticleDOI

Backpropagation applied to handwritten zip code recognition

TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Journal ArticleDOI

The Pascal Visual Object Classes Challenge: A Retrospective

TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Related Papers (5)