scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

04 Sep 2014-
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Proceedings ArticleDOI
01 Oct 2017
TL;DR: Zhang et al. as mentioned in this paper proposed a multi-level scene description network (MSDN) to solve the three vision tasks jointly in an end-to-end manner, where object, phrase, and caption regions are aligned with a dynamic graph based on their spatial and semantic connections.
Abstract: Object detection, scene graph generation and region captioning, which are three scene understanding tasks at different semantic levels, are tied together: scene graphs are generated on top of objects detected in an image with their pairwise relationship predicted, while region captioning gives a language description of the objects, their attributes, relations and other context information. In this work, to leverage the mutual connections across semantic levels, we propose a novel neural network model, termed as Multi-level Scene Description Network (denoted as MSDN), to solve the three vision tasks jointly in an end-to-end manner. Object, phrase, and caption regions are first aligned with a dynamic graph based on their spatial and semantic connections. Then a feature refining structure is used to pass messages across the three levels of semantic tasks through the graph. We benchmark the learned model on three tasks, and show the joint learning across three tasks with our proposed method can bring mutual improvements over previous models. Particularly, on the scene graph generation task, our proposed method outperforms the stateof- art method with more than 3% margin. Code has been made publicly available.

477 citations

Posted Content
TL;DR: Wang et al. as discussed by the authors proposed new residual modules to eliminate the negative impact of padding, and further designed new architectures using these modules with controlled receptive field size and network stride to enhance tracking robustness and accuracy.
Abstract: Siamese networks have drawn great attention in visual tracking because of their balanced accuracy and speed. However, the backbone networks used in Siamese trackers are relatively shallow, such as AlexNet [18], which does not fully take advantage of the capability of modern deep neural networks. In this paper, we investigate how to leverage deeper and wider convolutional neural networks to enhance tracking robustness and accuracy. We observe that direct replacement of backbones with existing powerful architectures, such as ResNet [14] and Inception [33], does not bring improvements. The main reasons are that 1)large increases in the receptive field of neurons lead to reduced feature discriminability and localization precision; and 2) the network padding for convolutions induces a positional bias in learning. To address these issues, we propose new residual modules to eliminate the negative impact of padding, and further design new architectures using these modules with controlled receptive field size and network stride. The designed architectures are lightweight and guarantee real-time tracking speed when applied to SiamFC [2] and SiamRPN [20]. Experiments show that solely due to the proposed network architectures, our SiamFC+ and SiamRPN+ obtain up to 9.8%/5.7% (AUC), 23.3%/8.8% (EAO) and 24.4%/25.0% (EAO) relative improvements over the original versions [2, 20] on the OTB-15, VOT-16 and VOT-17 datasets, respectively.

476 citations

Journal ArticleDOI
TL;DR: The proposed work shows that when pruning granularities are applied in combination, the CIFAR-10 network can be pruned by more than 70% with less than a 1% loss in accuracy.
Abstract: Real-time application of deep learning algorithms is often hindered by high computational complexity and frequent memory accesses. Network pruning is a promising technique to solve this problem. However, pruning usually results in irregular network connections that not only demand extra representation efforts but also do not fit well on parallel computation. We introduce structured sparsity at various scales for convolutional neural networks: feature map-wise, kernel-wise, and intra-kernel strided sparsity. This structured sparsity is very advantageous for direct computational resource savings on embedded computers, in parallel computing environments, and in hardware-based systems. To decide the importance of network connections and paths, the proposed method uses a particle filtering approach. The importance weight of each particle is assigned by assessing the misclassification rate with a corresponding connectivity pattern. The pruned network is retrained to compensate for the losses due to pruning. While implementing convolutions as matrix products, we particularly show that intra-kernel strided sparsity with a simple constraint can significantly reduce the size of the kernel and feature map tensors. The proposed work shows that when pruning granularities are applied in combination, we can prune the CIFAR-10 network by more than 70% with less than a 1% loss in accuracy.

476 citations


Cites background from "Very Deep Convolutional Networks fo..."

  • ...Convolutional neural networks (CNN) have been successfully applied to several diverse classification problems including speech and image recognition [1][2][3]....

    [...]

  • ...In the literature large sized deep networks [1][2][3] have achieved state-of-the-art performance on various challenging tasks....

    [...]

  • ...Large, deep Convolutional Neural Networks (CNN) have been successfully applied to diverse classification problems including speech and image recognition [Simonyan and Zisserman 2014; Krizhevsky et al. 2012; Hinton et al. 2012]....

    [...]

Posted Content
TL;DR: The authors align distributions of source and target by utilizing the task-specific decision boundaries between classes, which is a method for unsupervised domain adaptation, which outperforms other methods on several datasets of image classification and semantic segmentation.
Abstract: In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at \url{this https URL}

474 citations

Posted Content
TL;DR: A variant of the GRU model is introduced that leverages the convolution operations to enforce sparse connectivity of the model units and share parameters across the input spatial locations to mitigate the effect of low-level percepts on human action recognition and Video Captioning tasks.
Abstract: We propose an approach to learn spatio-temporal features in videos from intermediate visual representations we call "percepts" using Gated-Recurrent-Unit Recurrent Networks (GRUs).Our method relies on percepts that are extracted from all level of a deep convolutional network trained on the large ImageNet dataset. While high-level percepts contain highly discriminative information, they tend to have a low-spatial resolution. Low-level percepts, on the other hand, preserve a higher spatial resolution from which we can model finer motion patterns. Using low-level percepts can leads to high-dimensionality video representations. To mitigate this effect and control the model number of parameters, we introduce a variant of the GRU model that leverages the convolution operations to enforce sparse connectivity of the model units and share parameters across the input spatial locations. We empirically validate our approach on both Human Action Recognition and Video Captioning tasks. In particular, we achieve results equivalent to state-of-art on the YouTube2Text dataset using a simpler text-decoder model and without extra 3D CNN features.

474 citations


Cites background or methods from "Very Deep Convolutional Networks fo..."

  • ...Deep learning approaches have recently been used to learn video representations and have produced state-of-art results (Karpathy et al., 2014; Simonyan & Zisserman, 2014a; Wang et al., 2015b; Tran et al., 2014)....

    [...]

  • ...We follow the training procedure introduced by the two-stream framework Simonyan & Zisserman (2014a)....

    [...]

  • ...VGG-16 CNNs are pretrained on ImageNet (Simonyan & Zisserman, 2014b) and fine-tuned on the UCF-101 dataset, following the protocol in Wang et al. (2015b)....

    [...]

  • ...As it has been shown that characterizing entities in addition of action is important for the caption-generation task Yao et al. (2015a), we also use as encoder a CNN Szegedy et al. (2014), pretrained on ImageNet, that focuses on detecting static visual object categories....

    [...]

  • ...Simonyan & Zisserman (2014a) introduced a two-stream framework where they train CNNs independently on RGB and optical flow inputs....

    [...]

References
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations

Posted Content
TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.

9,803 citations

Journal ArticleDOI
TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Abstract: The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.

9,775 citations

Journal ArticleDOI
TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Abstract: The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this paper we provide a review of the challenge from 2008---2012. The paper is intended for two audiences: algorithm designers, researchers who want to see what the state of the art is, as measured by performance on the VOC datasets, along with the limitations and weak points of the current generation of algorithms; and, challenge designers, who want to see what we as organisers have learnt from the process and our recommendations for the organisation of future challenges. To analyse the performance of submitted algorithms on the VOC datasets we introduce a number of novel evaluation methods: a bootstrapping method for determining whether differences in the performance of two algorithms are significant or not; a normalised average precision so that performance can be compared across classes with different proportions of positive instances; a clustering method for visualising the performance across multiple algorithms so that the hard and easy images can be identified; and the use of a joint classifier over the submitted algorithms in order to measure their complementarity and combined performance. We also analyse the community's progress through time using the methods of Hoiem et al. (Proceedings of European Conference on Computer Vision, 2012) to identify the types of occurring errors. We conclude the paper with an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.

6,061 citations