scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

Reads0
Chats0
TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Proceedings ArticleDOI

Deep filter banks for texture recognition and segmentation

TL;DR: This work proposes a new texture descriptor, FV-CNN, obtained by Fisher Vector pooling of a Convolutional Neural Network (CNN) filter bank, which substantially improves the state-of-the-art in texture, material and scene recognition.
Journal ArticleDOI

Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

TL;DR: In this article, the authors systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving and provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection.
Posted Content

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

TL;DR: P3D ResNet as discussed by the authors proposes a pseudo-3D residual network to exploit all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks.
Book ChapterDOI

Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation

TL;DR: A new model called Deep Reconstruction-Classification Network (DRCN), which jointly learns a shared encoding representation for two tasks: supervised classification of labeled source data, and unsupervised reconstruction of unlabeled target data, is designed.
Posted Content

Learning Representations for Automatic Colorization

TL;DR: A fully automatic image colorization system that leverages recent advances in deep networks, exploiting both low-level and semantic representations, and explores colorization as a vehicle for self-supervised visual representation learning.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)