scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

01 Jan 2015-
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Journal ArticleDOI
TL;DR: A deep neural network-based approach to image quality assessment (IQA) that allows for joint learning of local quality and local weights in an unified framework and shows a high ability to generalize between different databases, indicating a high robustness of the learned features.
Abstract: We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features.

479 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this paper, the authors train an end-to-end architecture that jointly handles low-, mid-, and high-level vision tasks in a unified architecture, which can act like a swiss knife for vision tasks.
Abstract: In this work we train in an end-to-end manner a convolutional neural network (CNN) that jointly handles low-, mid-, and high-level vision tasks in a unified architecture. Such a network can act like a swiss knife for vision tasks, we call it an UberNet to indicate its overarching nature. The main contribution of this work consists in handling challenges that emerge when scaling up to many tasks. We introduce techniques that facilitate (i) training a deep architecture while relying on diverse training sets and (ii) training many (potentially unlimited) tasks with a limited memory budget. This allows us to train in an end-to-end manner a unified CNN architecture that jointly handles (a) boundary detection (b) normal estimation (c) saliency estimation (d) semantic segmentation (e) human part segmentation (f) semantic boundary detection, (g) region proposal generation and object detection. We obtain competitive performance while jointly addressing all tasks in 0.7 seconds on a GPU. Our system will be made publicly available.

478 citations

Journal ArticleDOI
TL;DR: The state of the art in continuous optimization methods for such problems, and particular emphasis on optimal first-order schemes that can deal with typical non-smooth and large-scale objective functions used in imaging problems are described.
Abstract: A large number of imaging problems reduce to the optimization of a cost function , with typical structural properties. The aim of this paper is to describe the state of the art in continuous optimization methods for such problems, and present the most successful approaches and their interconnections. We place particular emphasis on optimal first-order schemes that can deal with typical non-smooth and large-scale objective functions used in imaging problems. We illustrate and compare the different algorithms using classical non-smooth problems in imaging, such as denoising and deblurring. Moreover, we present applications of the algorithms to more advanced problems, such as magnetic resonance imaging, multilabel image segmentation, optical flow estimation, stereo matching, and classification.

477 citations

Proceedings ArticleDOI
15 Oct 2016
TL;DR: This work finds that a previously unexplored dimension exists in the design space of CNN accelerators that focuses on the dataflow across convolutional layers, and is able to fuse the processing of multiple CNN layers by modifying the order in which the input data are brought on chip, enabling caching of intermediate data between the evaluation of adjacent CNN layers.
Abstract: Deep convolutional neural networks (CNNs) are rapidly becoming the dominant approach to computer vision and a major component of many other pervasive machine learning tasks, such as speech recognition, natural language processing, and fraud detection. As a result, accelerators for efficiently evaluating CNNs are rapidly growing in popularity. The conventional approaches to designing such CNN accelerators is to focus on creating accelerators to iteratively process the CNN layers. However, by processing each layer to completion, the accelerator designs must use off-chip memory to store intermediate data between layers, because the intermediate data are too large to fit on chip. In this work, we observe that a previously unexplored dimension exists in the design space of CNN accelerators that focuses on the dataflow across convolutional layers. We find that we are able to fuse the processing of multiple CNN layers by modifying the order in which the input data are brought on chip, enabling caching of intermediate data between the evaluation of adjacent CNN layers. We demonstrate the effectiveness of our approach by constructing a fused-layer CNN accelerator for the first five convolutional layers of the VGGNet-E network and comparing it to the state-of-the-art accelerator implemented on a Xilinx Virtex-7 FPGA. We find that, by using 362KB of on-chip storage, our fused-layer accelerator minimizes off-chip feature map data transfer, reducing the total transfer by 95%, from 77MB down to 3.6MB per image.

477 citations

Posted Content
TL;DR: Wang et al. as discussed by the authors proposed new residual modules to eliminate the negative impact of padding, and further designed new architectures using these modules with controlled receptive field size and network stride to enhance tracking robustness and accuracy.
Abstract: Siamese networks have drawn great attention in visual tracking because of their balanced accuracy and speed. However, the backbone networks used in Siamese trackers are relatively shallow, such as AlexNet [18], which does not fully take advantage of the capability of modern deep neural networks. In this paper, we investigate how to leverage deeper and wider convolutional neural networks to enhance tracking robustness and accuracy. We observe that direct replacement of backbones with existing powerful architectures, such as ResNet [14] and Inception [33], does not bring improvements. The main reasons are that 1)large increases in the receptive field of neurons lead to reduced feature discriminability and localization precision; and 2) the network padding for convolutions induces a positional bias in learning. To address these issues, we propose new residual modules to eliminate the negative impact of padding, and further design new architectures using these modules with controlled receptive field size and network stride. The designed architectures are lightweight and guarantee real-time tracking speed when applied to SiamFC [2] and SiamRPN [20]. Experiments show that solely due to the proposed network architectures, our SiamFC+ and SiamRPN+ obtain up to 9.8%/5.7% (AUC), 23.3%/8.8% (EAO) and 24.4%/25.0% (EAO) relative improvements over the original versions [2, 20] on the OTB-15, VOT-16 and VOT-17 datasets, respectively.

476 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI

40,330 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations