scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

01 Jan 2015-
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Posted Content
TL;DR: This work presents a novel solution to ZSL based on learning a Semantic AutoEncoder (SAE), which outperforms significantly the existing ZSL models with the additional benefit of lower computational cost and beats the state-of-the-art when the SAE is applied to supervised clustering problem.
Abstract: Existing zero-shot learning (ZSL) models typically learn a projection function from a feature space to a semantic embedding space (e.g.~attribute space). However, such a projection function is only concerned with predicting the training seen class semantic representation (e.g.~attribute prediction) or classification. When applied to test data, which in the context of ZSL contains different (unseen) classes without training data, a ZSL model typically suffers from the project domain shift problem. In this work, we present a novel solution to ZSL based on learning a Semantic AutoEncoder (SAE). Taking the encoder-decoder paradigm, an encoder aims to project a visual feature vector into the semantic space as in the existing ZSL models. However, the decoder exerts an additional constraint, that is, the projection/code must be able to reconstruct the original visual feature. We show that with this additional reconstruction constraint, the learned projection function from the seen classes is able to generalise better to the new unseen classes. Importantly, the encoder and decoder are linear and symmetric which enable us to develop an extremely efficient learning algorithm. Extensive experiments on six benchmark datasets demonstrate that the proposed SAE outperforms significantly the existing ZSL models with the additional benefit of lower computational cost. Furthermore, when the SAE is applied to supervised clustering problem, it also beats the state-of-the-art.

455 citations

Journal ArticleDOI
TL;DR: This work proposes a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC), which explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation.
Abstract: Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features, our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the effectiveness of the proposed method.

455 citations

Posted Content
TL;DR: An overview of domain adaptation and transfer learning with a specific view on visual applications and the methods that go beyond image categorization, such as object detection or image segmentation, video analyses or learning visual attributes are overviewed.
Abstract: The aim of this paper is to give an overview of domain adaptation and transfer learning with a specific view on visual applications. After a general motivation, we first position domain adaptation in the larger transfer learning problem. Second, we try to address and analyze briefly the state-of-the-art methods for different types of scenarios, first describing the historical shallow methods, addressing both the homogeneous and the heterogeneous domain adaptation methods. Third, we discuss the effect of the success of deep convolutional architectures which led to new type of domain adaptation methods that integrate the adaptation within the deep architecture. Fourth, we overview the methods that go beyond image categorization, such as object detection or image segmentation, video analyses or learning visual attributes. Finally, we conclude the paper with a section where we relate domain adaptation to other machine learning solutions.

454 citations

Journal ArticleDOI
TL;DR: This work compares two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss, built on top of the transformer self-attention architecture.
Abstract: The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem -- unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) we compare two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss. Both models are built on top of the transformer self-attention architecture; (2) we investigate to what extent lip reading is complementary to audio speech recognition, especially when the audio signal is noisy; (3) we introduce and publicly release two new datasets for audio-visual speech recognition: LRS2-BBC, consisting of thousands of natural sentences from British television; and LRS3-TED, consisting of hundreds of hours of TED and TEDx talks obtained from YouTube. The models that we train surpass the performance of all previous work on lip reading benchmark datasets by a significant margin.

454 citations

Posted Content
TL;DR: In this article, the importance weight of each particle is assigned by computing the misclassification rate with corresponding connectivity pattern, and the pruned network is re-trained to compensate for the losses due to pruning.
Abstract: Real time application of deep learning algorithms is often hindered by high computational complexity and frequent memory accesses. Network pruning is a promising technique to solve this problem. However, pruning usually results in irregular network connections that not only demand extra representation efforts but also do not fit well on parallel computation. We introduce structured sparsity at various scales for convolutional neural networks, which are channel wise, kernel wise and intra kernel strided sparsity. This structured sparsity is very advantageous for direct computational resource savings on embedded computers, parallel computing environments and hardware based systems. To decide the importance of network connections and paths, the proposed method uses a particle filtering approach. The importance weight of each particle is assigned by computing the misclassification rate with corresponding connectivity pattern. The pruned network is re-trained to compensate for the losses due to pruning. While implementing convolutions as matrix products, we particularly show that intra kernel strided sparsity with a simple constraint can significantly reduce the size of kernel and feature map matrices. The pruned network is finally fixed point optimized with reduced word length precision. This results in significant reduction in the total storage size providing advantages for on-chip memory based implementations of deep neural networks.

454 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI

40,330 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations