scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

01 Jan 2015-
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Proceedings ArticleDOI
24 Jul 2017
TL;DR: Extensive experiments on the KITTI VO dataset show competitive performance to state-of-the-art methods, verifying that the end-to-end Deep Learning technique can be a viable complement to the traditional VO systems.
Abstract: This paper studies monocular visual odometry (VO) problem. Most of existing VO algorithms are developed under a standard pipeline including feature extraction, feature matching, motion estimation, local optimisation, etc. Although some of them have demonstrated superior performance, they usually need to be carefully designed and specifically fine-tuned to work well in different environments. Some prior knowledge is also required to recover an absolute scale for monocular VO. This paper presents a novel end-to-end framework for monocular VO by using deep Recurrent Convolutional Neural Networks (RCNNs). Since it is trained and deployed in an end-to-end manner, it infers poses directly from a sequence of raw RGB images (videos) without adopting any module in the conventional VO pipeline. Based on the RCNNs, it not only automatically learns effective feature representation for the VO problem through Convolutional Neural Networks, but also implicitly models sequential dynamics and relations using deep Recurrent Neural Networks. Extensive experiments on the KITTI VO dataset show competitive performance to state-of-the-art methods, verifying that the end-to-end Deep Learning technique can be a viable complement to the traditional VO systems.

452 citations

Proceedings ArticleDOI
31 Oct 2016
TL;DR: Extensive experiments show that combining RNN and C3D together can improve video-based emotion recognition noticeably, and are presented to the EmotiW 2016 Challenge.
Abstract: In this paper, we present a video-based emotion recognition system submitted to the EmotiW 2016 Challenge. The core module of this system is a hybrid network that combines recurrent neural network (RNN) and 3D convolutional networks (C3D) in a late-fusion fashion. RNN and C3D encode appearance and motion information in different ways. Specifically, RNN takes appearance features extracted by convolutional neural network (CNN) over individual video frames as input and encodes motion later, while C3D models appearance and motion of video simultaneously. Combined with an audio module, our system achieved a recognition accuracy of 59.02% without using any additional emotion-labeled video clips in training set, compared to 53.8% of the winner of EmotiW 2015. Extensive experiments show that combining RNN and C3D together can improve video-based emotion recognition noticeably.

452 citations

Proceedings ArticleDOI
Yifan Feng1, Zizhao Zhang, Xibin Zhao, Rongrong Ji1, Yue Gao 
01 Jun 2018
TL;DR: Experimental results and comparison with state-of-the-art methods show that the proposed GVCNN method can achieve a significant performance gain on both the 3D shape classification and retrieval tasks.
Abstract: 3D shape recognition has attracted much attention recently. Its recent advances advocate the usage of deep features and achieve the state-of-the-art performance. However, existing deep features for 3D shape recognition are restricted to a view-to-shape setting, which learns the shape descriptor from the view-level feature directly. Despite the exciting progress on view-based 3D shape description, the intrinsic hierarchical correlation and discriminability among views have not been well exploited, which is important for 3D shape representation. To tackle this issue, in this paper, we propose a group-view convolutional neural network (GVCNN) framework for hierarchical correlation modeling towards discriminative 3D shape description. The proposed GVCNN framework is composed of a hierarchical view-group-shape architecture, i.e., from the view level, the group level and the shape level, which are organized using a grouping strategy. Concretely, we first use an expanded CNN to extract a view level descriptor. Then, a grouping module is introduced to estimate the content discrimination of each view, based on which all views can be splitted into different groups according to their discriminative level. A group level description can be further generated by pooling from view descriptors. Finally, all group level descriptors are combined into the shape level descriptor according to their discriminative weights. Experimental results and comparison with state-of-the-art methods show that our proposed GVCNN method can achieve a significant performance gain on both the 3D shape classification and retrieval tasks.

452 citations

Posted Content
TL;DR: SegLink as mentioned in this paper decomposes text into two locally detectable elements, namely segments and links, which are detected densely at multiple scales by an end-to-end trained, fully-convolutional neural network.
Abstract: Most state-of-the-art text detection methods are specific to horizontal Latin text and are not fast enough for real-time applications. We introduce Segment Linking (SegLink), an oriented text detection method. The main idea is to decompose text into two locally detectable elements, namely segments and links. A segment is an oriented box covering a part of a word or text line; A link connects two adjacent segments, indicating that they belong to the same word or text line. Both elements are detected densely at multiple scales by an end-to-end trained, fully-convolutional neural network. Final detections are produced by combining segments connected by links. Compared with previous methods, SegLink improves along the dimensions of accuracy, speed, and ease of training. It achieves an f-measure of 75.0% on the standard ICDAR 2015 Incidental (Challenge 4) benchmark, outperforming the previous best by a large margin. It runs at over 20 FPS on 512x512 images. Moreover, without modification, SegLink is able to detect long lines of non-Latin text, such as Chinese.

451 citations

Journal ArticleDOI
TL;DR: The field of semantic segmentation as pertaining to deep convolutional neural networks is reviewed and comprehensive coverage of the top approaches is provided and the strengths, weaknesses and major challenges are summarized.
Abstract: During the long history of computer vision, one of the grand challenges has been semantic segmentation which is the ability to segment an unknown image into different parts and objects (e.g., beach, ocean, sun, dog, swimmer). Furthermore, segmentation is even deeper than object recognition because recognition is not necessary for segmentation. Specifically, humans can perform image segmentation without even knowing what the objects are (for example, in satellite imagery or medical X-ray scans, there may be several objects which are unknown, but they can still be segmented within the image typically for further investigation). Performing segmentation without knowing the exact identity of all objects in the scene is an important part of our visual understanding process which can give us a powerful model to understand the world and also be used to improve or augment existing computer vision techniques. Herein this work, we review the field of semantic segmentation as pertaining to deep convolutional neural networks. We provide comprehensive coverage of the top approaches and summarize the strengths, weaknesses and major challenges.

451 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI

40,330 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations