scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

Reads0
Chats0
TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Proceedings ArticleDOI

Analyzing and Improving the Image Quality of StyleGAN

TL;DR: In this paper, the authors propose to redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images.
Proceedings ArticleDOI

Stacked Attention Networks for Image Question Answering

TL;DR: In this paper, a stacked attention network (SAN) is proposed to learn to answer natural language questions from images by using semantic representation of a question as query to search for the regions in an image that are related to the answer.
Proceedings ArticleDOI

CSPNet: A New Backbone that can Enhance Learning Capability of CNN

TL;DR: Cross Stage Partial Network (CSPNet) as discussed by the authors integrates feature maps from the beginning and the end of a network stage to mitigate the problem of duplicate gradient information within network optimization.
Proceedings ArticleDOI

Conditional Random Fields as Recurrent Neural Networks

TL;DR: In this article, a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling is introduced.
Proceedings ArticleDOI

Learning Multi-domain Convolutional Neural Networks for Visual Tracking

TL;DR: A novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network using a large set of videos with tracking ground-truths to obtain a generic target representation.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)