scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

01 Jan 2015-
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Proceedings ArticleDOI
Kaiming He1, Jian Sun1
07 Jun 2015
TL;DR: This paper investigates the accuracy of CNNs under constrained time cost, and presents an architecture that achieves very competitive accuracy in the ImageNet dataset, yet is 20% faster than “AlexNet” [14] (16.0% top-5 error, 10-view test).
Abstract: Though recent advanced convolutional neural networks (CNNs) have been improving the image recognition accuracy, the models are getting more complex and time-consuming. For real-world applications in industrial and commercial scenarios, engineers and developers are often faced with the requirement of constrained time budget. In this paper, we investigate the accuracy of CNNs under constrained time cost. Under this constraint, the designs of the network architectures should exhibit as trade-offs among the factors like depth, numbers of filters, filter sizes, etc. With a series of controlled comparisons, we progressively modify a baseline model while preserving its time complexity. This is also helpful for understanding the importance of the factors in network designs. We present an architecture that achieves very competitive accuracy in the ImageNet dataset (11.8% top-5 error, 10-view test), yet is 20% faster than “AlexNet” [14] (16.0% top-5 error, 10-view test).

1,259 citations

Journal ArticleDOI
TL;DR: A new CNN based on LeNet-5 is proposed for fault diagnosis which can extract the features of the converted 2-D images and eliminate the effect of handcrafted features and has achieved significant improvements.
Abstract: Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.

1,240 citations

Proceedings ArticleDOI
06 Jun 2016
TL;DR: This work extensively evaluates Multimodal Compact Bilinear pooling (MCB) on the visual question answering and grounding tasks and consistently shows the benefit of MCB over ablations without MCB.
Abstract: Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. We hypothesize that these methods are not as expressive as an outer product of the visual and textual vectors. As the outer product is typically infeasible due to its high dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively combine multimodal features. We extensively evaluate MCB on the visual question answering and grounding tasks. We consistently show the benefit of MCB over ablations without MCB. For visual question answering, we present an architecture which uses MCB twice, once for predicting attention over spatial features and again to combine the attended representation with the question representation. This model outperforms the state-of-the-art on the Visual7W dataset and the VQA challenge.

1,233 citations

Posted Content
TL;DR: A binary matrix multiplication GPU kernel is programmed with which it is possible to run the MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy.
Abstract: We introduce a method to train Quantized Neural Networks (QNNs) --- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-time the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves $51\%$ top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.

1,232 citations

Journal ArticleDOI
TL;DR: A deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF is presented, and a deep structured learning scheme which learns the unary and pairwise potentials of continuousCRF in a unified deep CNN framework is proposed.
Abstract: In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.

1,229 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI

40,330 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations