scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

Reads0
Chats0
TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Posted Content

Bilinear CNN Models for Fine-grained Visual Recognition

TL;DR: This paper proposed bilinear models, which consists of two feature extractors whose outputs are multiplied using outer product at each location of the image and pooled to obtain an image descriptor, which can model local pairwise feature interactions in a translationally invariant manner.
Posted Content

Deep Networks with Stochastic Depth

TL;DR: Stochastic depth as discussed by the authors randomly drops a subset of layers during training and bypasses them with the identity function, which can increase the depth of residual networks even beyond 1200 layers and still yield meaningful improvements in test error.
Proceedings ArticleDOI

Bag of Tricks for Image Classification with Convolutional Neural Networks

TL;DR: This article examined a collection of such refinements and empirically evaluated their impact on the final model accuracy through ablation study, and showed that by combining these refinements together, they are able to improve various CNN models significantly.
Proceedings ArticleDOI

Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation

TL;DR: Expectation-Maximization (EM) methods for semantic image segmentation model training under weakly supervised and semi-supervised settings are developed and extensive experimental evaluation shows that the proposed techniques can learn models delivering competitive results on the challenging PASCAL VOC 2012 image segmentsation benchmark, while requiring significantly less annotation effort.
Journal ArticleDOI

Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing

TL;DR: A comprehensive survey of the recent research efforts on edge intelligence can be found in this paper, where the authors review the background and motivation for AI running at the network edge and provide an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning model toward training/inference at the edge.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)