scispace - formally typeset
Search or ask a question
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

01 Jan 2015-
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Citations
More filters
Posted Content
TL;DR: This paper introduces network trimming which iteratively optimizes the network by pruning unimportant neurons based on analysis of their outputs on a large dataset, inspired by an observation that the outputs of a significant portion of neurons in a large network are mostly zero.
Abstract: State-of-the-art neural networks are getting deeper and wider. While their performance increases with the increasing number of layers and neurons, it is crucial to design an efficient deep architecture in order to reduce computational and memory costs. Designing an efficient neural network, however, is labor intensive requiring many experiments, and fine-tunings. In this paper, we introduce network trimming which iteratively optimizes the network by pruning unimportant neurons based on analysis of their outputs on a large dataset. Our algorithm is inspired by an observation that the outputs of a significant portion of neurons in a large network are mostly zero, regardless of what inputs the network received. These zero activation neurons are redundant, and can be removed without affecting the overall accuracy of the network. After pruning the zero activation neurons, we retrain the network using the weights before pruning as initialization. We alternate the pruning and retraining to further reduce zero activations in a network. Our experiments on the LeNet and VGG-16 show that we can achieve high compression ratio of parameters without losing or even achieving higher accuracy than the original network.

767 citations

Journal ArticleDOI
03 Apr 2017
TL;DR: In this paper, the authors proposed a large-scale data set, termed "NWPU-RESISC45", which is a publicly available benchmark for remote sensing image scene classification (RESISC), created by Northwestern Polytechnical University.
Abstract: Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various data sets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning data sets and methods for scene classification is still lacking. In addition, almost all existing data sets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale data set, termed “NWPU-RESISC45,” which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This data set contains 31 500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 1) is large-scale on the scene classes and the total image number; 2) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion; and 3) has high within-class diversity and between-class similarity. The creation of this data set will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed data set, and the results are reported as a useful baseline for future research.

767 citations

Proceedings ArticleDOI
TL;DR: Despite only using a rudimentary combination of familiar techniques such as the Kalman Filter and Hungarian algorithm for the tracking components, this approach achieves an accuracy comparable to state-of-the-art online trackers.
Abstract: This paper explores a pragmatic approach to multiple object tracking where the main focus is to associate objects efficiently for online and realtime applications. To this end, detection quality is identified as a key factor influencing tracking performance, where changing the detector can improve tracking by up to 18.9%. Despite only using a rudimentary combination of familiar techniques such as the Kalman Filter and Hungarian algorithm for the tracking components, this approach achieves an accuracy comparable to state-of-the-art online trackers. Furthermore, due to the simplicity of our tracking method, the tracker updates at a rate of 260 Hz which is over 20x faster than other state-of-the-art trackers.

766 citations

Book ChapterDOI
08 Sep 2018
TL;DR: The proposed graph representation achieves state-of-the-art results on the Charades and Something-Something datasets and obtains a huge gain when the model is applied in complex environments.
Abstract: How do humans recognize the action “opening a book”? We argue that there are two important cues: modeling temporal shape dynamics and modeling functional relationships between humans and objects. In this paper, we propose to represent videos as space-time region graphs which capture these two important cues. Our graph nodes are defined by the object region proposals from different frames in a long range video. These nodes are connected by two types of relations: (i) similarity relations capturing the long range dependencies between correlated objects and (ii) spatial-temporal relations capturing the interactions between nearby objects. We perform reasoning on this graph representation via Graph Convolutional Networks. We achieve state-of-the-art results on the Charades and Something-Something datasets. Especially for Charades with complex environments, we obtain a huge \(4.4\%\) gain when our model is applied in complex environments.

763 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: Region Convolutional 3D Network (R-C3D) as mentioned in this paper uses a three-dimensional fully convolutional network to extract meaningful spatio-temporal features to capture activities, accurately localizing the start and end times of each activity.
Abstract: We address the problem of activity detection in continuous, untrimmed video streams. This is a difficult task that requires extracting meaningful spatio-temporal features to capture activities, accurately localizing the start and end times of each activity. We introduce a new model, Region Convolutional 3D Network (R-C3D), which encodes the video streams using a three-dimensional fully convolutional network, then generates candidate temporal regions containing activities, and finally classifies selected regions into specific activities. Computation is saved due to the sharing of convolutional features between the proposal and the classification pipelines. The entire model is trained end-to-end with jointly optimized localization and classification losses. R-C3D is faster than existing methods (569 frames per second on a single Titan X Maxwell GPU) and achieves state-of-the-art results on THUMOS’14. We further demonstrate that our model is a general activity detection framework that does not rely on assumptions about particular dataset properties by evaluating our approach on ActivityNet and Charades. Our code is available at http://ai.bu.edu/r-c3d/

762 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI

40,330 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations