scispace - formally typeset
Search or ask a question
Book

Vibration problems in engineering

TL;DR: In this article, the Probleme dynamique and Vibration were used for propagation of ondes reference records created on 2004-09-07, modified on 2016-08-08.
Abstract: Keywords: Probleme dynamique ; Vibration ; Propagation des ondes Reference Record created on 2004-09-07, modified on 2016-08-08
Citations
More filters
Journal ArticleDOI
TL;DR: This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.
Abstract: We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.

2,648 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the possibility of dissipating mechanical energy with piezoelectric material shunted with passive electrical circuits, and derived the effective mechanical impedance for the piezolectric element shunted by an arbitrary circuit.

1,685 citations

Journal ArticleDOI
TL;DR: In this article, the Young's modulus of stacks of graphene sheets suspended over photolithographically defined trenches in silicon dioxide was measured using an atomic force microscope, with measured spring constants scaling as expected with the dimensions of the suspended section, ranging from 1to5N∕m.
Abstract: Using an atomic force microscope, we measured effective spring constants of stacks of graphene sheets (less than 5) suspended over photolithographically defined trenches in silicon dioxide. Measurements were made on layered graphene sheets of thicknesses between 2 and 8nm, with measured spring constants scaling as expected with the dimensions of the suspended section, ranging from 1to5N∕m. When our data are fitted to a model for doubly clamped beams under tension, we extract a Young’s modulus of 0.5TPa, compared to 1TPa for bulk graphite along the basal plane, and tensions on the order of 10−7N.

1,146 citations

Journal ArticleDOI
TL;DR: In this article, the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler-Bernoulli beam assumptions is presented, and the resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained.
Abstract: Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples.

1,040 citations

Journal ArticleDOI
TL;DR: It is shown that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves and agree with models based on effusion through a small number of ångstrom-sized pores.
Abstract: Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of angstrom-sized pores.

1,016 citations