scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Vigilance Behaviour in Grazing African Antelopes

01 Jan 1982-Behaviour (Brill)-Vol. 79, Iss: 2, pp 81-107
TL;DR: Time spent looking varied with position within the group; this effect was strongest in closed habitats, where central animals tended to scan least and feed most, and within species, animals inclosed habitats, those with dense vegetation, tended to spend more time in looking than did animals in the open.
Abstract: African antelope may devote a large proportion of their foraging time to looking around. The factors affecting such vigilance behaviour are examined for grazing antelope, five species being studied in detail. The proportion of time spent looking decreased as species body weight increased. Within species, animals in closed habitats, those with dense vegetation, tended to spend more time in looking than did animals in the open. There was some evidence that vigilance, presumably for predators, was shared by group members, but in one species, impala, vigilance apparently increased with group size and with proximity to neighbours. Time spent looking varied with position within the group; this effect was strongest in closed habitats, where central animals tended to scan least and feed most. Vigilance increased as feeding success decreased, partly due to mutual interference between looking and feeding. The possible social, foraging and predator-detection values of vigilance are discussed. A simple model is introduced to help explain the effects of cover and to facilitate further discussion.
Citations
More filters
01 Jan 2013
TL;DR: The influence of anthropogenic development of water on Coyotes and Kit Foxes in the Great Basin and Mojave Deserts is investigated in this article, where the authors used infrared-triggered cameras to record video of kit fox behavior at water developments in the Mojave desert.
Abstract: The Influence of Anthropogenic Development of Water on Coyotes and Kit Foxes in the Great Basin and Mojave Deserts Lucas K. Hall Department of Plant and Wildlife Sciences, BYU Master of Science Anthropogenic provisioning of water (water developments) to enhance abundance and distribution of wildlife is a common management practice in arid regions where water is limiting. Despite the long-term and widespread use of water developments, little is known about how they influence distribution, competition dynamics, and behavior of native species. To elucidate the potential influences of water developments on native species, we tested hypotheses concerning the occurrence and behavior of native kit foxes (Vulpes macrotis). First, we tested the indirect effect of water hypothesis (IEWH) which proposes that water developments negatively affect the arid-adapted kit fox by enabling a water-dependent competitor (i.e., coyote; Canis latrans) to expand distribution in arid landscapes. We tested the two predictions of the IEWH (i.e., coyotes will visit areas with water more frequently and kit foxes will avoid coyotes) and evaluated relative use of water by canids in the Great Basin and Mojave Deserts from 2010 to 2012. We established scent stations in areas with (wet) and without (dry) water and monitored visitation by canids to scent stations and water sources using infrared-triggered cameras. There was no difference in the proportions of visits to scent stations in wet or dry areas by coyotes or kit foxes at either study area. There was no correlation between visits to scent stations by coyotes and kit foxes. Visitation to water sources was not different for coyotes between study areas, but kit foxes visited water sources more in Mojave than Great Basin. The intense visitation to water by kit foxes in Mojave challenges our understanding that this species does not readily drink water. Our results did not support the IEWH in the Great Basin or Mojave Deserts for these two canids. Second, we tested three hypotheses that have been proposed to explain spatial variation in vigilance behavior. The predator-vigilance hypothesis (PVH) proposes that prey increase vigilance where there is evidence of predators. The visibility-vigilance hypothesis (VVH) suggests that prey increase vigilance where detection of predators is impeded or visibility is obstructed. The refuge-vigilance hypothesis (RVH) proposes that prey may perceive areas with low visibility (greater cover) as refuges and decrease vigilance. We evaluated support for these hypotheses using the kit fox, a solitary carnivore subject to intraguild predation, as a model. From 2010 to 2012, we used infrared-triggered cameras to record video of kit fox behavior at water developments in the Mojave Desert. The RVH explained more variation in vigilance behavior of kit foxes than the other two hypotheses (AICc model weight = 0.37). Kit foxes were less vigilant at water developments with low overhead cover (refuge) obstructing visibility. Based on our results, the PVH and VVH may not be applicable to all species of prey. Solitary prey, unlike gregarious prey, may use areas with concealing cover to maximize resource acquisition and minimize vigilance.

1 citations


Cites background from "Vigilance Behaviour in Grazing Afri..."

  • ...…or obstructed visibility (indirect cue of risk of predation) where it is difficult to visually detect predators, prey increase vigilance behavior (Underwood 1982, Metcalfe 1984, Goldsmith 1990, Martella et al. 1995, Arenz and Leger 1997, Whittingham et al. 2004, Hernández et al. 2005, Bednekoff…...

    [...]

Dissertation
01 Jan 2007
TL;DR: Elk assess factors of several types when assessing risk and deciding how much time to allocate to vigilance, and all well-supported models of vigilance included several ‘prey’ variables and 10 several “predator” variables, which highlights the need to consider information about predators when trying to explain vigilance levels in prey.
Abstract: Many studies have shown that levels of antipredator vigilance are sensitive to variation in prey attributes, such as age, sex and group size. It is also well established that vigilance is sensitive to environmental effects, such as the presence of cover. In contrast, little is known about the sensitivity of vigilance to variation in factors associated with the predator itself, such as proximity, the size of the threatening group, and cues about motivation to hunt. Finally, little is known about the relative importance of these three classes of variables (predator, prey, and environment), or about the information content of simple versus complex models of vigilance. We quantified the vigilance levels of elk (Cervus elaphus) preyed upon by wolves (Canis lupus) in Yellowstone National Park, between January and May in 2005 and 2006, and compared a set of 38 regression models for vigilance levels, using Akaike’s Information Criterion. Complex models incorporating the characteristics of the wolf pack, the structure of the elk herd, and the environmental conditions performed better than simple models. While univariate models of vigilance detect significant relationships, they have low information content relative to multivariate models. These results show that elk assess factors of several types when assessing risk and deciding how much time to allocate to vigilance. In particular, we found that all well-supported models of vigilance included several ‘prey’ variables and 10 several ‘predator’ variables. This result highlights the need to consider information about predators when trying to explain vigilance levels in prey.

1 citations


Cites background from "Vigilance Behaviour in Grazing Afri..."

  • ...…sex (Hunter and Skinner 1998; Childress and Lung 2003; Winnie and Creel 2007), body condition (Winnie and Creel 2007), position within the group (Underwood 1982; Keys and Dugatkin 1990; Hunter and Skinner 1998), habitat type (Lima 1987; Scheel 1993; White and Berger 2001), time of day (Scheel…...

    [...]

  • ...(4) Position within the herd: It has been argued that peripheral animals tend to be more vigilant than interior animals because they are at a greater risk of being attacked first by a predator (Hamilton 1971; Underwood 1982; Keys and Dugatkin 1990; Hunter and Skinner 1998)....

    [...]

  • ...Elk, like many ungulates, are less vigilant as herd size increases (Underwood 1982; Elgar 1989; Roberts 1996)....

    [...]

  • ...Increasing vigilance levels to increase the probability of detecting a predator is often negatively correlated with time spent foraging (Underwood 1982; Lima 1998a)....

    [...]

  • ...…studied in a wide variety of mammals and birds, and these studies have identified many factors that influence scanning rates, including group size (Underwood 1982; Elgar 1989; Roberts 1996), age and sex (Hunter and Skinner 1998; Childress and Lung 2003; Winnie and Creel 2007), body condition…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Seven major types of sampling for observational studies of social behavior have been found in the literature and the major strengths and weaknesses of each method are pointed out.
Abstract: Seven major types of sampling for observational studies of social behavior have been found in the literature. These methods differ considerably in their suitability for providing unbiased data of various kinds. Below is a summary of the major recommended uses of each technique: In this paper, I have tried to point out the major strengths and weaknesses of each sampling method. Some methods are intrinsically biased with respect to many variables, others to fewer. In choosing a sampling method the main question is whether the procedure results in a biased sample of the variables under study. A method can produce a biased sample directly, as a result of intrinsic bias with respect to a study variable, or secondarily due to some degree of dependence (correlation) between the study variable and a directly-biased variable. In order to choose a sampling technique, the observer needs to consider carefully the characteristics of behavior and social interactions that are relevant to the study population and the research questions at hand. In most studies one will not have adequate empirical knowledge of the dependencies between relevant variables. Under the circumstances, the observer should avoid intrinsic biases to whatever extent possible, in particular those that direcly affect the variables under study. Finally, it will often be possible to use more than one sampling method in a study. Such samples can be taken successively or, under favorable conditions, even concurrently. For example, we have found it possible to take Instantaneous Samples of the identities and distances of nearest neighbors of a focal individual at five or ten minute intervals during Focal-Animal (behavior) Samples on that individual. Often during Focal-Animal Sampling one can also record All Occurrences of Some Behaviors, for the whole social group, for categories of conspicuous behavior, such as predation, intergroup contact, drinking, and so on. The extent to which concurrent multiple sampling is feasible will depend very much on the behavior categories and rate of occurrence, the observational conditions, etc. Where feasible, such multiple sampling can greatly aid in the efficient use of research time.

12,470 citations

Journal ArticleDOI
TL;DR: An antithesis to the view that gregarious behaviour is evolved through benefits to the population or species is presented, and simply defined models are used to show that even in non-gregarious species selection is likely to favour individuals who stay close to others.

3,343 citations


Additional excerpts

  • ...The 'selfish herd' (HAMILTON, 1971)...

    [...]

Journal ArticleDOI
TL;DR: The paper describes different feeding styles among antelope, in terms of selection of food items and coverage of home ranges, and argues that these feeding styles bear a relationship to maximum group size of feeding animals through the influence of dispersion ofFood items upon group cohesion.
Abstract: The types of social organisation displayed by the African antelope species have been assigned in this paper to five classes, distinguished largely by the strategies used by the reproductively active males in securing mating rights, and the effects of those strategies on other social castes. The paper attempts to show that these strategies are appropriate to each class because of the effects of other, ecological, aspects of their ways of life. The paper describes different feeding styles among antelope, in terms of selection of food items and coverage of home ranges. It argues that these feeding styles bear a relationship to maximum group size of feeding animals through the influence of dispersion of food items upon group cohesion. The feeding styles also bear a relationship to body size and to habitat choice, both of which influence the antelope species' antipredator behaviour. Thus feeding style is related to anti-predator behaviour which, in many species, influences minimum group size. Group size and the pattern of movement over the annual home range affect the likelihood of females being found in a given place at a given time, and it is this likelihood which, to a large extent, determines the kind of strategy a male must employ to achieve mating rights. The effects of the different strategies employed by males can be seen in such aspects of each species' biology as sexual dimorphism, adult sex ratio, and differential distribution of the sexes.

2,088 citations


"Vigilance Behaviour in Grazing Afri..." refers background in this paper

  • ...Such habitat differences may have influenced the evolution of social and anti-predator behaviour in antelope (GEIST, 1974; JARMAN, 1974; ESTES, 1974) and may also affect both predator and prey behaviour on a day to day basis (SCHALLER, 1972; KRUUK, 1972; CURIO, 1976; EDMUNDS, 1974)....

    [...]

  • ...If scanning reduces predation, it may take up less of the large animals' time either because both the number and the range of potential predators are smaller (JARMAN, 1974; GEIST, 1974), or because these antelope, being found in large groups, either are (a) less easy for a predator to find, (b) share vigilance with other group members (CARACAO et al....

    [...]

  • ...The smaller and, according to JARMAN (1974), the more selective species are those which show significant correlations between the rate of looking and indices of feeding success, supporting the possibility that scanning forms a part of foraging behaviour....

    [...]

Journal ArticleDOI

1,193 citations

Book
21 Sep 1976
TL;DR: This chapter discusses hunting for Prey, the Diversity of Hunting Methods, and the Motivation Underlying Feeding Responses of Predator-Prey Interactions.
Abstract: 1 Internal Factors.- A. Hunger: Expression through Overt behavior.- I. Predatory Schedules.- 1. Patterns of Satiation.- 2. Feast and Famine.- II. Hunger and Diel Rhythms.- III. The Ramification of Hunger Effects.- 1. Capture-eliciting Prey Stimuli.- 2. Search behavior.- IV. The Motivation Underlying Feeding Responses.- 1. Hunger Thresholds of Feeding Response Components.- 2. The Complexity of Predatory Motivation.- V. The Diversity of Foraging Tactics.- VI. Feeding Components Affected and not Affected by Hunger.- B. The Control of Feeding Responses by Factors Other than Hunger.- I. The Readiness to Hunt.- II. Prey Storing.- III. Providing Food for Dependent Family Members.- C. The Problem of Specific Hungers.- I. Switching of Prey.- II. The Prey-density Predation Curve.- III. Swamping the Appetite of Predators.- D. Daily and Annual Rhythms in Predator-Prey Interactions.- I. Daily Rhythm of Predation.- II. Daily Activity Patterns of the Prey.- III. Annual Rhythm of Predation.- 2 Searching for Prey.- A. Path of Searching and Scanning Movements.- B. Area-concentrated Search.- I. Short-term Area Concentration.- 1. Living Scattered and Area-concentrated Search.- 2. The Nature of the Path Changes.- 3. Search Behavior after the Disappearance of Prey.- II. Long-term Area Concentration.- III. One-prey : One-place Association.- C. Object-concentrated Search.- I. Existence and Properties of "Searching Image".- 1. Ecological Evidence.- 2. Experimental Evidence.- II. Social Facilitation of Searching Image Formation.- III. Searching Image and "Training Bias".- IV. Searching Image and Profitability of Hunting.- 1. Ecological Evidence for Profitability of Hunting.- 2. Experimental Evidence for Profitability of Hunting.- V. Prey-specific Expectation.- VI. Ecological Implications of Searching Image.- 3 Prey Recognition.- A. The Stimulus-specificity of Prey Capture.- I. Capture-eliciting Prey Stimuli.- II. Capture-inhibiting Prey Stimuli.- B. One-prey : One-response Relationships.- C. The Assessment of the Circumstances of a Hunt.- D. Prey Recognition by Prey-related Signals.- E. Prey Stimulus Summation.- F. Novelty Versus Familiarity.- I. The Rejection of Novel Prey.- II. Familiarization with Prey and Its Consequences.- G. The Multi-channel Hypothesis of Prey Recognition.- 4 Prey Selection.- A. Preying upon the Weak and the Sick.- B. Preying upon the Odd and the Conspicuous.- C. The Mechanics of Prey Selection.- D. Evolutionary Implications.- 5 Hunting for Prey.- A. Modes of Hunting.- I. Hunting by Speculation.- II. Stalking and Ambushing.- 1. Stalking.- 2. Ambushing.- III. Prey Attack under Disguise.- IV. Pursuit of the Prey.- 1. Changes of Velocity of Attack (Pursuit).- 2. Interception of the Flight Path.- 3. Counteradaptations of the Prey.- V. Exhausting Dangerous Prey.- VI. Insinuation.- VII. Scavenging and Cleptoparasitism.- 1. Modes and Extent.- 2. Cleptoparasitism and Competition.- 3. Counter-measures of the Robbed.- VIII. Tool-use.- IX. Mutilation.- B. The Diversity of Hunting Methods.- I. Prey-specific Methods.- II. Situation-specific Methods.- III. Mechanisms and Causes of Predatory Versatility.- 1. General.- 2. Individual Predatory Repertories.- 3. The Persistence of Individual Traits.- 4. Predatory Specialization and Structural Modification.- 5. Predatory Versatility in Relation to Prey Availability.- C. Behavioral Aspects of Hunting Success.- I. A Comparison of Hunting Success across Predator Species.- II. Variables Influencing Hunting Success within Predator Species.- III. Aspects of Communal Hunting.- 1. Modes and Properties of Communal Hunting.- 2. Factors Conducive to Communal Hunting.- 3. Benefits of Communal Hunting.- References.- Scientific Names of Animals and Plants.

919 citations


"Vigilance Behaviour in Grazing Afri..." refers background in this paper

  • ...Such habitat differences may have influenced the evolution of social and anti-predator behaviour in antelope (GEIST, 1974; JARMAN, 1974; ESTES, 1974) and may also affect both predator and prey behaviour on a day to day basis (SCHALLER, 1972; KRUUK, 1972; CURIO, 1976; EDMUNDS, 1974)....

    [...]