scispace - formally typeset
Search or ask a question
Journal ArticleDOI

VIII. On the pressure developed in a liquid during the collapse of a spherical cavity

01 Aug 1917-Philosophical Magazine Series 1 (Informa UK Limited)-Vol. 34, Iss: 200, pp 94-98
About: This article is published in Philosophical Magazine Series 1.The article was published on 1917-08-01. It has received 2532 citations till now. The article focuses on the topics: Collapse (topology).
Citations
More filters
Book
01 Oct 2013
TL;DR: In this paper, the fundamental physical processes involved in bubble dynamics and the phenomenon of cavitation are described and explained, and a review of the free streamline methods used to treat separated cavity flows with large attached cavities is provided.
Abstract: This book describes and explains the fundamental physical processes involved in bubble dynamics and the phenomenon of cavitation. It is intended as a combination of a reference book for those scientists and engineers who work with cavitation or bubble dynamics and as a monograph for advanced students interested in some of the basic problems associated with this category of multiphase flows. A basic knowledge of fluid flow and heat transfer is assumed but otherwise the analytical methods presented are developed from basic principles. The book begins with a chapter on nucleation and describes both the theory and observations of nucleation in flowing and non-flowing systems. The following three chapters provide a systematic treatment of the dynamics of the growth, collapse or oscillation of individual bubbles in otherwise quiescent liquids. Chapter 4 summarizes the state of knowledge of the motion of bubbles in liquids. Chapter 5 describes some of the phenomena which occur in homogeneous bubbly flows with particular emphasis on cloud cavitation and this is followed by a chapter summarizing some of the experiemntal observations of cavitating flows. The last chapter provides a review of the free streamline methods used to treat separated cavity flows with large attached cavities.

2,994 citations

Journal ArticleDOI
TL;DR: In this paper, a front-tracking method for multiphase flows is presented, which is based on writing one set of governing equations for the whole computational domain and treating the different phases as one fluid with variable material properties.

2,011 citations

Journal ArticleDOI
TL;DR: In this article, the working mechanisms of femtosecond laser nanoprocessing in biomaterials with oscillator pulses of 80-MHz repetition rate and with amplified pulses of 1-kHz repetition rate were investigated.
Abstract: We review recent advances in laser cell surgery, and investigate the working mechanisms of femtosecond laser nanoprocessing in biomaterials with oscillator pulses of 80-MHz repetition rate and with amplified pulses of 1-kHz repetition rate. Plasma formation in water, the evolution of the temperature distribution, thermoelastic stress generation, and stress-induced bubble formation are numerically simulated for NA=1.3, and the outcome is compared to experimental results. Mechanisms and the spatial resolution of femtosecond laser surgery are then compared to the features of continuous-wave (cw) microbeams. We find that free electrons are produced in a fairly large irradiance range below the optical breakdown threshold, with a deterministic relationship between free-electron density and irradiance. This provides a large ‘tuning range’ for the creation of spatially extremely confined chemical, thermal, and mechanical effects via free-electron generation. Dissection at 80-MHz repetition rate is performed in the low-density plasma regime at pulse energies well below the optical breakdown threshold and only slightly higher than used for nonlinear imaging. It is mediated by free-electron-induced chemical decomposition (bond breaking) in conjunction with multiphoton-induced chemistry, and hardly related to heating or thermoelastic stresses. When the energy is raised, accumulative heating occurs and long-lasting bubbles are produced by tissue dissociation into volatile fragments, which is usually unwanted. By contrast, dissection at 1-kHz repetition rate is performed using more than 10-fold larger pulse energies and relies on thermoelastically induced formation of minute transient cavities with lifetimes <100 ns. Both modes of femtosecond laser nanoprocessing can achieve a 2–3 fold better precision than cell surgery using cw irradiation, and enable manipulation at arbitrary locations.

1,226 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the formation reactions of the hydroxyl radical (·OH) and the mechanisms of pollutants degradation in six types of advanced oxidation processes, including radiation, photolysis and photocatalysis, sonolysis, electrochemical oxidation technologies, Fenton based reactions, and ozone-based processes.
Abstract: Advanced oxidation processes (AOPs), defined as those technologies that utilize the hydroxyl radical (·OH) for oxidation, have received increasing attention in the research and development of wastewater treatment technologies in the last decades. These processes have been applied successfully for the removal or degradation of toxic pollutants or used as pretreatment to convert recalcitrant pollutants into biodegradable compounds that can then be treated by conventional biological methods. The efficacy of AOPs depends on the generation of reactive free radicals, the most important of which is the hydroxyl radical (·OH). The authors summarize the formation reactions of ·OH and the mechanisms of pollutants degradation. They cover six types of advanced oxidation processes, including radiation, photolysis and photocatalysis, sonolysis, electrochemical oxidation technologies, Fenton-based reactions, and ozone-based processes. Controversial issues in pollutants degradation mechanism were discussed. They review t...

1,102 citations


Cites background from "VIII. On the pressure developed in ..."

  • ...…that the collapse is so rapid that the compression of the gas and vapor inside the bubble is adiabatic (Adewuyi, 2001; Adewuyi, 2005a; Chowdhury and Viraraghavan, 2009; Gogate, 2008; Ince et al., 2001; Ley and Low, 1989; Noltingk and Neppiras, 1950; Rayleigh, 1917; Serpone and Colarusso, 1994)....

    [...]

  • ...For detailed information of cavitation formation, readers are requested to refer to the earlier references (Adewuyi, 2001; Chowdhury and Viraraghavan, 2009; Ince et al., 2001; Noltingk and Neppiras, 1950; Rayleigh, 1917; Serpone and Colarusso, 1994)....

    [...]

Journal ArticleDOI
20 Sep 1991-Science
TL;DR: Sonoluminescence spectra from silicone oil showed emission came from excited state C2 (Swan band transitions, d3IIg—a3II�), which has been modeled with synthetic spectra as a function of rotational and vibrational temperatures.
Abstract: Ultrasonic irradiation of liquids causes acoustic cavitation: the formation, growth, and implosive collapse of bubbles. Bubble collapse during cavitation generates transient hot spots responsible for high-energy chemistry and emission of light. Determination of the temperatures reached in a cavitating bubble has remained a difficult experimental problem. As a spectroscopic probe of the cavitation event, sonoluminescence provides a solution. Sonoluminescence spectra from silicone oil were reported and analyzed. The observed emission came from excited state C2 (Swan band transitions, d3IIg—a3IIµ), which has been modeled with synthetic spectra as a function of rotational and vibrational temperatures. From comparison of synthetic to observed spectra, the effective cavitation temperature was found to be 5075 ± 156 K.

1,020 citations