scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Visible light driven g-C3N4/Bi4NbO8X (X=Cl, Br) heterojunction photocatalyst for the degradation of organic pollutants

TL;DR: In this article, a highly potential visible light active g-C3N4/Bi4NbO8X (Cl, Br) heterojunction photocatalysts were constructed at the interface of the coupling between Bi4nbO 8X and g-c3n4, and pristine materials were analyzed to be 2.68 eV, 2.69 eV and 2.48 eV.
About: This article is published in Journal of Alloys and Compounds.The article was published on 2022-02-01 and is currently open access. It has received 15 citations till now. The article focuses on the topics: Photocatalysis & Rhodamine B.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive, systematic and timely summary on the LBB-based materials applied in photocatalysis, which start with the classification, characteristics, and synthesis, is provided in this paper , where four types of LBB photocatalysts with different crystal structures are introduced.

53 citations

Journal ArticleDOI
TL;DR: In this paper , a 2D-Bi 4 NbO 8 Cl nanosheet (BNOCF) was fabricated using molten salt or flux method and was employed to degrade tetracycline (TCH) under visible light irradiation.

11 citations

Journal ArticleDOI
TL;DR: In this paper , a photocatalyst of O-g-C3N4 (OCN) coupled with SnO2 (SO) was synthesized and its photocatalytic performance was evaluated under simulated sunlight irradiation for rhodamine B (RhB) degradation and Cr(IV) reduction.

9 citations

Journal ArticleDOI
TL;DR: In this article , a gas bubbling exfoliation strategy with NH4Cl assistant was developed to make ultrathin 2D g-C3N4 nanosheets self-assembled into a 3D macroporous network on a large scale.

6 citations

Journal ArticleDOI
TL;DR: In this article , an environmentally-friendly soil remediation method based on biochar/graphite carbon nitride (BC/g-C3N4) was developed for removing TPH in soil via adsorption and photocatalysis.
Abstract: This work developed an environmentally-friendly soil remediation method based on BC and g-C3N4, and demonstrated the technical feasibility of remediating petroleum-contaminated soil with biochar/graphite carbon nitride (BC/g-C3N4). The synthesis of BC/g-C3N4 composites was used for the removal of TPH in soil via adsorption and photocatalysis. BC, g-C3N4, and BC/g-C3N4 have been characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area analyzer (BET), FT-IR, and X-ray diffraction (XRD). BC/g-C3N4 facilitates the degradation due to reducing recombination and better electron-hole pair separation. BC, g-C3N4, and BC/g-C3N4 were tested for their adsorption and photocatalytic degradation capacities. Excellent and promising results are brought out by an apparent synergism between adsorption and photocatalysis. The optimum doping ratio of 1:3 between BC and g-C3N4 was determined by single-factor experiments. The removal rate of total petroleum hydrocarbons (TPH) by BC/g-C3N4 reached 54.5% by adding BC/g-C3N4 at a dosing rate of 0.08 g/g in a neutral soil with 10% moisture content, which was 2.12 and 1.95 times of BC and g-C3N4, respectively. The removal process of TPH by BC/g-C3N4 conformed to the pseudo-second-order kinetic model. In addition, the removal rates of different petroleum components in soil were analyzed in terms of gas chromatography–mass spectrometry (GC-MS), and the removal rates of nC13-nC35 were above 90% with the contaminated soil treated by BC/g-C3N4. The radical scavenger experiments indicated that superoxide radical played the major role in the photocatalytic degradation of TPH. This work definitely demonstrates that the BC/g-C3N4 composites have great potential for application in the remediation of organic pollutant contaminated soil.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
TL;DR: In this article, a top-down thermal oxidation etching of bulk g-C3N4 in air has been shown to improve the photocatalytic activities of the material in terms of OH radical generation and hydrogen evolution.
Abstract: Graphitic (g)-C3N4 with a layered structure has the potential of forming graphene-like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g-C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top-down strategy, namely, thermal oxidation etching of bulk g-C3N4 in air. Compared to the bulk g-C3N4, the highly anisotropic 2D-nanosheets possess a high specific surface area of 306 m2 g-1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in-plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g-C3N4 nanosheets have been remarkably improved in terms of OH radical generation and photocatalytic hydrogen evolution.

2,900 citations

Journal ArticleDOI
TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Abstract: Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

2,868 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the polycondensation of this structure, how to modify band positions and band gap by doping and copolymerization, and how to texture the organic solid to make it an effective photocatalyst.
Abstract: Polymeric graphitic carbon nitride (for simplicity, g-C3N4) is a layered material similar to graphene, being composed of only C, N, and some impurity H. Contrary to graphenes, g-C3N4 is a medium band gap semiconductor and an effective photocatalyst for a broad variety of reactions, and it possesses a high thermal and chemical stability In this Perspective, we describe the polycondensation of this structure, how to modify band positions and band gap by doping and copolymerization, and how to texture the organic solid to make it an effective photocatalyst. We then describe the photochemical splitting of water and some mild and selective photooxidation reactions catalyzed by g-C3N4.

1,449 citations

Journal ArticleDOI
TL;DR: The enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photoc atalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors.
Abstract: Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron–hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p–n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

1,382 citations