scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Visible-Light-Induced α-Amino C–H Bond Arylation Enabled by Electron Donor–Acceptor Complexes

30 Apr 2021-Organic Letters (American Chemical Society (ACS))-Vol. 23, Iss: 10, pp 3913-3918
TL;DR: In this article, a novel visible-light-induced α-amino C-H bond arylation protocol, without a photoredox catalyst, has been disclosed, which does not require any transition metal, oxidant, or exclusion of oxygen or moisture.
About: This article is published in Organic Letters.The article was published on 2021-04-30. It has received 15 citations till now. The article focuses on the topics: Electron donor & Acceptor.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a boronate complex with an electron-rich aryllithium is formed, and a primary radical is generated which isomerizes to the more stable secondary radical before radical−radical coupling with the arene radical−anion, giving β−aryl primary boronic ester products.
Abstract: Abstract 1,2‐Bis‐boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron‐rich aryllithium which, in the presence of an electron‐deficient aryl nitrile, leads to the formation of an electron donor–acceptor complex. Following visible‐light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical‐radical coupling with the arene radical‐anion, giving β‐aryl primary boronic ester products. The reactions proceed under catalyst‐free conditions. This method also allows stereodivergent coupling of cyclic cis‐1,2‐bis‐boronic esters to provide trans‐substituted products, complementing the selectivity observed in the Suzuki–Miyaura reaction.

18 citations

Journal ArticleDOI
TL;DR: In this paper , a regio-selective C-H and N-H bond functionalization of indolines using alcohols in water via tandem dehydrogenation of N-heterocycles and alcohols was disclosed.
Abstract: We disclosed a regio-selective C-H and N-H bond functionalization of indolines using alcohols in water via tandem dehydrogenation of N-heterocycles and alcohols. A diverse range of N- and C3-alkylated indolines/indoles were accessed utilizing a new cooperative iridium catalyst. The practical applicability of this methodology was demonstrated by the preparative-scale synthesis and synthesis of a psychoactive drug, N,N-dimethyltryptamine. A catalytic cycle is proposed based on several kinetic experiments, series of control experiments and density functional theory calculations.

10 citations

Journal ArticleDOI
Sasa Li1, Mincong Su1, Jie Sun1, Kunjun Hu1, Jian Jin1 
TL;DR: A mild and practical C(sp3)-H lactonization protocol has been achieved by merging photocatalysis and magnesium (iron, nickel) catalysis as discussed by the authors, where a diverse range of 2-alkylbenzoic acids with a variety of substitution patterns could be transformed into the corresponding phthalide products.

9 citations

Journal ArticleDOI
TL;DR: The radical cations of tertary amines (R3N) have been well-established as the precursors of HAT reagents in the photochemical transformations.
Abstract: The radical cations of tertiary amines (R3N) have been well-established as the precursors of HAT reagents in photochemical transformations. Similarly, thiols and thioacids bearing SH groups have also been widely applied as HAT reagents. Despite the fact that sulfoxides (R2SO) and sulfides (RSR) also bear lone pairs of electrons, these compounds have been barely reported as HAT reagents in photocatalysis. On the other hand, the α-C–H 4-pyridylation of O or N-containing compounds has been documented, whereas 2-pyridylation remains challenging. However, the antihistamine and anticholinergic agent carbinoxamine is an ether bearing 2-pyridyl, which has not been obtained by the existing α-photoarylation of ether. In this work, we report the discovery of a non-donor–acceptor (D–A) type organic photoreductant CBZ6 and sulfoxide/sulfide synergistically catalyzed general α-C(sp3)–H arylation of ethers, thioethers and amines. By using as low as 1 mol% of CBZ6 as a recyclable organic photoreductant and sulfoxides or sulfides as a new type of HAT reagent, the 2- or 4-pyridylation of O, N, or S-containing compounds has been accomplished. This is the first base-free version of α-C–H 2-/4-pyridylation of O, N, or S-containing compounds. It is the first example of sulfoxides or sulfides working as HAT reagents. It is also the first general method for photocatalytic HAT 2-pyridylation of various ethers, amines or thioethers.

4 citations

Journal ArticleDOI
TL;DR: The present transformation employs the cheap and low-toxic 2-tert-butylanthraquinone as a metal-free photocatalyst and air as a green oxidant at room temperature to synthesize 6-oxyalkylated 1,2,4-triazine-3,5(2H, 4H)-diones with a wide range of functional group tolerance.
Abstract: An efficient and convenient method to synthesize 6-oxyalkylated 1,2,4-triazine-3,5(2H, 4H)-diones has been developed via visible-light-induced cross-dehydrogenative coupling reaction between 1,2,4-triazine-3,5(2H, 4H)-diones and ethers with a wide range of functional group tolerance. The present transformation employs the cheap and low-toxic 2-tert-butylanthraquinone as a metal-free photocatalyst and air as a green oxidant at room temperature. Moreover, this reaction can also be driven by sunlight as a clean energy resource. The synthetic utility of this method is further demonstrated by gram-scale reaction and application in the preparation of key intermediates of bioactive molecules.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

6,252 citations

Journal ArticleDOI
TL;DR: An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
Abstract: In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.

3,550 citations

Journal ArticleDOI
TL;DR: This tutorial review provides a historical overview of visible light photoredox catalysis in organic synthesis along with recent examples which underscore its vast potential to initiate organic transformations.
Abstract: The use of visible light sensitization as a means to initiate organic reactions is attractive due to the lack of visible light absorbance by organic compounds, reducing side reactions often associated with photochemical reactions conducted with high energy UV light. This tutorial review provides a historical overview of visible light photoredox catalysis in organic synthesis along with recent examples which underscore its vast potential to initiate organic transformations.

3,095 citations

Journal ArticleDOI
TL;DR: Transition metal photocatalysis represents a promising strategy towards the development of practical, scalable industrial processes with great environmental benefits.
Abstract: Light can be considered an ideal reagent for environmentally friendly, 'green' chemical synthesis; unlike many conventional reagents, light is non-toxic, generates no waste, and can be obtained from renewable sources. Nevertheless, the need for high-energy ultraviolet radiation in most organic photochemical processes has limited both the practicality and environmental benefits of photochemical synthesis on industrially relevant scales. This perspective describes recent approaches to the use of metal polypyridyl photocatalysts in synthetic organic transformations. Given the remarkable photophysical properties of these complexes, these new transformations, which use Ru(bpy)(3)(2+) and related photocatalysts, can be conducted using almost any source of visible light, including both store-bought fluorescent light bulbs and ambient sunlight. Transition metal photocatalysis thus represents a promising strategy towards the development of practical, scalable industrial processes with great environmental benefits.

2,036 citations

Journal ArticleDOI
TL;DR: This Perspective highlights the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.
Abstract: In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds.

1,808 citations