scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Visual-Based Localization Using Pictorial Planar Objects in Indoor Environment

30 Nov 2020-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 10, Iss: 23, pp 8583
TL;DR: An autonomous moving robot that can self-localize itself using its on-board camera and the PicPose technology is built and shows that the localization methods are practical, have very good accuracy, and can be used for real time robot navigation.
Abstract: Localization is an important technology for smart services like autonomous surveillance, disinfection or delivery robots in future distributed indoor IoT applications. Visual-based localization (VBL) is a promising self-localization approach that identifies a robot’s location in an indoor or underground 3D space by using its camera to scan and match the robot’s surrounding objects and scenes. In this study, we present a pictorial planar surface based 3D object localization framework. We have designed two object detection methods for localization, ArPico and PicPose. ArPico detects and recognizes framed pictures by converting them into binary marker codes for matching with known codes in the library. It then uses the corner points on a picture’s border to identify the camera’s pose in the 3D space. PicPose detects the pictorial planar surface of an object in a camera view and produces the pose output by matching the feature points in the view with that in the original picture and producing the homography to map the object’s actual location in the 3D real world map. We have built an autonomous moving robot that can self-localize itself using its on-board camera and the PicPose technology. The experiment study shows that our localization methods are practical, have very good accuracy, and can be used for real time robot navigation.
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed passive visual method based on pedestrian detection and projection transformation delivers high positioning performance and relies on security cameras installed in non-private areas so that pedestrians do not have to take photos.
Abstract: Indoor positioning applications are developing at a rapid pace; active visual positioning is one method that is applicable to mobile platforms. Other methods include Wi-Fi, CSI, and PDR approaches; however, their positioning accuracy usually cannot achieve the positioning performance of the active visual method. Active visual users, however, must take a photo to obtain location information, raising confidentiality and privacy issues. To address these concerns, we propose a solution for passive visual positioning based on pedestrian detection and projection transformation. This method consists of three steps: pretreatment, pedestrian detection, and pose estimation. Pretreatment includes camera calibration and camera installation. In pedestrian detection, features are extracted by deep convolutional neural networks using neighboring frame detection results and the map information as the region of interest attention model (RIAM). Pose estimation computes accurate localization results through projection transformation (PT). This system relies on security cameras installed in non-private areas so that pedestrians do not have to take photos. Experiments were conducted in a hall about 100 square meters in size, with 41 test-points for the localization experiment. The results show that the positioning error was 0.48 m (RMSE) and the 90% error was 0.73 m. Therefore, the proposed passive visual method delivers high positioning performance.

2 citations

References
More filters
Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Abstract: Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.

8,702 citations

Journal ArticleDOI
TL;DR: ORB-SLAM as discussed by the authors is a feature-based monocular SLAM system that operates in real time, in small and large indoor and outdoor environments, with a survival of the fittest strategy that selects the points and keyframes of the reconstruction.
Abstract: This paper presents ORB-SLAM, a feature-based monocular simultaneous localization and mapping (SLAM) system that operates in real time, in small and large indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.

4,522 citations

Journal ArticleDOI
TL;DR: A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation.
Abstract: This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.

3,807 citations

Journal ArticleDOI
TL;DR: The first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches is presented.
Abstract: We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera

3,772 citations

Journal ArticleDOI
TL;DR: ORB-SLAM2, a complete simultaneous localization and mapping (SLAM) system for monocular, stereo and RGB-D cameras, including map reuse, loop closing, and relocalization capabilities, is presented, being in most cases the most accurate SLAM solution.
Abstract: We present ORB-SLAM2, a complete simultaneous localization and mapping (SLAM) system for monocular, stereo and RGB-D cameras, including map reuse, loop closing, and relocalization capabilities. The system works in real time on standard central processing units in a wide variety of environments from small hand-held indoors sequences, to drones flying in industrial environments and cars driving around a city. Our back-end, based on bundle adjustment with monocular and stereo observations, allows for accurate trajectory estimation with metric scale. Our system includes a lightweight localization mode that leverages visual odometry tracks for unmapped regions and matches with map points that allow for zero-drift localization. The evaluation on 29 popular public sequences shows that our method achieves state-of-the-art accuracy, being in most cases the most accurate SLAM solution. We publish the source code, not only for the benefit of the SLAM community, but with the aim of being an out-of-the-box SLAM solution for researchers in other fields.

3,499 citations