scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search

01 Jan 2013-IEEE Transactions on Image Processing (IEEE Trans Image Process)-Vol. 22, Iss: 1, pp 363-376
TL;DR: An approach that simultaneously utilizes both visual and textual information to estimate the relevance of user tagged images is proposed, and the relevance estimation is determined with a hypergraph learning approach.
Abstract: Due to the popularity of social media websites, extensive research efforts have been dedicated to tag-based social image search. Both visual information and tags have been investigated in the research field. However, most existing methods use tags and visual characteristics either separately or sequentially in order to estimate the relevance of images. In this paper, we propose an approach that simultaneously utilizes both visual and textual information to estimate the relevance of user tagged images. The relevance estimation is determined with a hypergraph learning approach. In this method, a social image hypergraph is constructed, where vertices represent images and hyperedges represent visual or textual terms. Learning is achieved with use of a set of pseudo-positive images, where the weights of hyperedges are updated throughout the learning process. In this way, the impact of different tags and visual words can be automatically modulated. Comparative results of the experiments conducted on a dataset including 370+images are presented, which demonstrate the effectiveness of the proposed approach.
Citations
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work proposes a regional contrast based saliency extraction algorithm, which simultaneously evaluates global contrast differences and spatial coherence, and consistently outperformed existing saliency detection methods.
Abstract: Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

3,653 citations


Cites background from "Visual-Textual Joint Relevance Lear..."

  • ...adaptive compression of images [6], content-aware image editing [7], [8], image retrieval [9]–[11], etc....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: Evaluations on four benchmark datasets and comparisons with other 11 state-of-the-art algorithms demonstrate that DHSNet not only shows its significant superiority in terms of performance, but also achieves a real-time speed of 23 FPS on modern GPUs.
Abstract: Traditional1 salient object detection models often use hand-crafted features to formulate contrast and various prior knowledge, and then combine them artificially. In this work, we propose a novel end-to-end deep hierarchical saliency network (DHSNet) based on convolutional neural networks for detecting salient objects. DHSNet first makes a coarse global prediction by automatically learning various global structured saliency cues, including global contrast, objectness, compactness, and their optimal combination. Then a novel hierarchical recurrent convolutional neural network (HRCNN) is adopted to further hierarchically and progressively refine the details of saliency maps step by step via integrating local context information. The whole architecture works in a global to local and coarse to fine manner. DHSNet is directly trained using whole images and corresponding ground truth saliency masks. When testing, saliency maps can be generated by directly and efficiently feedforwarding testing images through the network, without relying on any other techniques. Evaluations on four benchmark datasets and comparisons with other 11 state-of-the-art algorithms demonstrate that DHSNet not only shows its significant superiority in terms of performance, but also achieves a real-time speed of 23 FPS on modern GPUs.

770 citations


Cites background from "Visual-Textual Joint Relevance Lear..."

  • ...In recent years, researchers have developed many computational models for salient object detection and applied them to benefit many other applications, such as image summarization [1], segmentation [2], retrieval [3], and editing [4]....

    [...]

Journal ArticleDOI
Yifan Feng1, Haoxuan You2, Zizhao Zhang2, Rongrong Ji1, Yue Gao2 
17 Jul 2019
TL;DR: A hypergraph neural networks framework for data representation learning, which can encode high-order data correlation in a hypergraph structure using a hyperedge convolution operation, which outperforms recent state-of-theart methods.
Abstract: In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data in real practice, we propose to incorporate such data structure in a hypergraph, which is more flexible on data modeling, especially when dealing with complex data. In this method, a hyperedge convolution operation is designed to handle the data correlation during representation learning. In this way, traditional hypergraph learning procedure can be conducted using hyperedge convolution operations efficiently. HGNN is able to learn the hidden layer representation considering the high-order data structure, which is a general framework considering the complex data correlations. We have conducted experiments on citation network classification and visual object recognition tasks and compared HGNN with graph convolutional networks and other traditional methods. Experimental results demonstrate that the proposed HGNN method outperforms recent state-of-theart methods. We can also reveal from the results that the proposed HGNN is superior when dealing with multi-modal data compared with existing methods.

527 citations


Cites methods from "Visual-Textual Joint Relevance Lear..."

  • ...In (Gao et al. 2013), a l2 regularize on the weights is introduced to learn optimal hyperedge weights....

    [...]

Journal ArticleDOI
TL;DR: The proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term and a novel algorithm to optimize the objective function is designed.
Abstract: The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.

382 citations


Cites background from "Visual-Textual Joint Relevance Lear..."

  • ...tures are integrated in terms of a linear model, and the visual features are considered in terms of a hypergraph regularizer [22], [33], [34], [36]–[38], [51] which captures high-order relationships in building the graph....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Journal ArticleDOI
TL;DR: This article proposes several novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position, and test results indicate that the proposed measures credit IR methods for their ability to retrieve highly relevant documents and allow testing of statistical significance of effectiveness differences.
Abstract: Modern large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation. In order to develop IR techniques in this direction, it is necessary to develop evaluation approaches and methods that credit IR methods for their ability to retrieve highly relevant documents. This can be done by extending traditional evaluation methods, that is, recall and precision based on binary relevance judgments, to graded relevance judgments. Alternatively, novel measures based on graded relevance judgments may be developed. This article proposes several novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position. The first one accumulates the relevance scores of retrieved documents along the ranked result list. The second one is similar but applies a discount factor to the relevance scores in order to devaluate late-retrieved documents. The third one computes the relative-to-the-ideal performance of IR techniques, based on the cumulative gain they are able to yield. These novel measures are defined and discussed and their use is demonstrated in a case study using TREC data: sample system run results for 20 queries in TREC-7. As a relevance base we used novel graded relevance judgments on a four-point scale. The test results indicate that the proposed measures credit IR methods for their ability to retrieve highly relevant documents and allow testing of statistical significance of effectiveness differences. The graphs based on the measures also provide insight into the performance IR techniques and allow interpretation, for example, from the user point of view.

4,337 citations


"Visual-Textual Joint Relevance Lear..." refers methods in this paper

  • ...Here we illustrate not only the NDCG measurements of each query but also the average NDCG measurements of the 52 queries....

    [...]

  • ...We also illustrate the NDCG results obtained by the other six methods in the figure for comparison....

    [...]

  • ...6 illustrates the average NDCG measurements at different depths....

    [...]

  • ...The Normalized Discounted Cumulative Gain (NDCG) [62] is employed for performance evaluation....

    [...]

Proceedings Article
09 Dec 2003
TL;DR: A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points.
Abstract: We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

4,205 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work proposes a regional contrast based saliency extraction algorithm, which simultaneously evaluates global contrast differences and spatial coherence, and consistently outperformed existing saliency detection methods.
Abstract: Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

3,653 citations