Visualizing Motion Data in Virtual Reality: Understanding the Roles of Animation, Interaction, and Static Presentation
TL;DR: In this paper, the authors present a taxonomy of motion visualizations organized by the method (animation, interaction, or static presentation) used to depict both the spatial and temporal dimensions of the data.
Abstract: We present a study of interactive virtual reality visualizations of scientific motions as found in biomechanics experiments. Our approach is threefold. First, we define a taxonomy of motion visualizations organized by the method (animation, interaction, or static presentation) used to depict both the spatial and temporal dimensions of the data. Second, we design and implement a set of eight example visualizations suggested by the taxonomy and evaluate their utility in a quantitative user study. Third, together with biomechanics collaborators, we conduct a qualitative evaluation of the eight example visualizations applied to a current study of human spinal kinematics. Results suggest that visualizations in this style that use interactive control for the time dimension of the data are preferable to others. Within this category, quantitative results support the utility of both animated and interactive depictions for space; however, qualitative feedback suggest that animated depictions for space should be avoided in biomechanics applications. © 2012 Wiley Periodicals, Inc.
Citations
More filters
TL;DR: Four considerations that abstract comparison are presented that identify issues and categorize solutions in a domain independent manner and provide a process for developers to consider support for comparison in the design of visualization tools.
Abstract: Supporting comparison is a common and diverse challenge in visualization. Such support is difficult to design because solutions must address both the specifics of their scenario as well as the general issues of comparison. This paper aids designers by providing a strategy for considering those general issues. It presents four considerations that abstract comparison. These considerations identify issues and categorize solutions in a domain independent manner. The first considers how the common elements of comparison—a target set of items that are related and an action the user wants to perform on that relationship—are present in an analysis problem. The second considers why these elements lead to challenges because of their scale, in number of items, complexity of items, or complexity of relationship. The third considers what strategies address the identified scaling challenges, grouping solutions into three broad categories. The fourth considers which visual designs map to these strategies to provide solutions for a comparison analysis problem. In sequence, these considerations provide a process for developers to consider support for comparison in the design of visualization tools. Case studies show how these considerations can help in the design and evaluation of visualization solutions for comparison problems.
163 citations
Cites background from "Visualizing Motion Data in Virtual ..."
...Challenges in visualizing temporal sets have been explored (for example [17,23])....
[...]
TL;DR: Empirical studies on the effect of different perceptual cues (fog, pseudo-chromadepth, kinetic depth, and depicting edges) both individually and in combination on the depth perception of cerebral vascular volumes and compare these to the cue of stereopsis are presented.
Abstract: Cerebral vascular images obtained through angiography are used by neurosurgeons for diagnosis, surgical planning, and intraoperative guidance. The intricate branching of the vessels and furcations, however, make the task of understanding the spatial three-dimensional layout of these images challenging. In this paper, we present empirical studies on the effect of different perceptual cues (fog, pseudo-chromadepth, kinetic depth, and depicting edges) both individually and in combination on the depth perception of cerebral vascular volumes and compare these to the cue of stereopsis. Two experiments with novices and one experiment with experts were performed. The results with novices showed that the pseudo-chromadepth and fog cues were stronger cues than that of stereopsis. Furthermore, the addition of the stereopsis cue to the other cues did not improve relative depth perception in cerebral vascular volumes. In contrast to novices, the experts also performed well with the edge cue. In terms of both novice and expert subjects, pseudo-chromadepth and fog allow for the best relative depth perception. By using such cues to improve depth perception of cerebral vasculature, we may improve diagnosis, surgical planning, and intraoperative guidance.
77 citations
01 Jun 2018
TL;DR: This state of the art report (STAR) reviews flattening techniques which have been developed for the analysis of the following medical entities: the circulation system, the colon, the brain, tumors, and bones, and presents guidelines for the future development of flattening technique in these areas.
Abstract: In many areas of medicine, visualization research can help with task simplification, abstraction or complexity reduction. A common visualization approach is to facilitate parameterization technique ...
41 citations
TL;DR: This work surveys the field and presents a taxonomy for classifying existing and new comparison visualization techniques for such data into four fundamental approaches: Juxtaposition, Superimposition, Interchangeable, and Explicit Encoding.
Abstract: A variety of visualization techniques can be utilized to compare multiple Spatial 3D or time-varying Spatial 3D data instances (e.g., comparing pre- versus post-treatment volumetric medical images). However, despite the fact that comparative visualization is frequently needed – scientists, engineers, and even humanists must routinely compare such data – visualization users and practitioners suffer from a lack of adequate Spatial 3D comparative visualization tools and guidelines. Here we survey the field and present a taxonomy for classifying existing and new comparison visualization techniques for such data into four fundamental approaches: Juxtaposition, Superimposition, Interchangeable, and Explicit Encoding. The results clarify the key design decisions and tradeoffs that designers must make to create an effective comparative Spatial 3D data visualization and suggest the potential of emerging hybrid approaches, ones creatively combining aspects of the four fundamental approaches.
28 citations
01 Oct 2020
TL;DR: A visual analysis system that is designed for immersive visualisation and exploration of human motion data and applies and evaluates this novel approach on a relevant VR application domain to identify and interpret motion patterns in a meaningful way.
Abstract: With the rise of virtual reality experiences for applications in entertainment, industry, science and medicine, the evaluation of human motion in immersive environments is becoming more important. By analysing the motion of virtual reality users, design choices and training progress in the virtual environment can be understood and improved. Since the motion is captured in a virtual environment, performing the analysis in the same environment provides a valuable context and guidance for the analysis. We have created a visual analysis system that is designed for immersive visualisation and exploration of human motion data. By combining suitable data mining algorithms with immersive visualisation techniques, we facilitate the reasoning and understanding of the underlying motion. We apply and evaluate this novel approach on a relevant VR application domain to identify and interpret motion patterns in a meaningful way.
28 citations
References
More filters
TL;DR: OpenSim is developed, a freely available, open-source software system that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments.
Abstract: Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.
3,621 citations
01 Oct 2002-International Journal of Human-computer Studies \/ International Journal of Man-machine Studies
TL;DR: In cases where animated graphics seem superior to static ones, scrutiny reveals lack of equivalence between animated and static graphics in content or procedures; the animated graphics convey more information or involve interactivity.
Abstract: Graphics have been used since ancient times to portray things that are inherently spatiovisual, like maps and building plans. More recently, graphics have been used to portray things that are metaphorically spatiovisual, like graphs and organizational charts. The assumption is that graphics can facilitate comprehension, learning, memory, communication and inference. Assumptions aside, research on static graphics has shown that only carefully designed and appropriate graphics prove to be beneficial for conveying complex systems. Effective graphics conform to the Congruence Principle according to which the content and format of the graphic should correspond to the content and format of the concepts to be conveyed. From this, it follows that animated graphics should be effective in portraying change over time. Yet the research on the efficacy of animated over static graphics is not encouraging. In cases where animated graphics seem superior to static ones, scrutiny reveals lack of equivalence between animated and static graphics in content or procedures; the animated graphics convey more information or involve interactivity. Animations of events may be ineffective because animations violate the second principle of good graphics, the Apprehension Principle, according to which graphics should be accurately perceived and appropriately conceived. Animations are often too complex or too fast to be accurately perceived. Moreover, many continuous events are conceived of as sequences of discrete steps. Judicious use of interactivity may overcome both these disadvantages. Animations may be more effective than comparable static graphics in situations other than conveying complex systems, for example, for real time reorientations in time and space.
1,647 citations
TL;DR: The biplanar fluoroscopy hardware and computational methods described here should make XROMM an accessible and useful addition to the available technologies for studying the form, function, and evolution of vertebrate animals.
Abstract: X-Ray Reconstruction of Moving Morphology (XROMM) comprises a set of 3D X-ray motion analysis techniques that merge motion data from in vivo X-ray videos with skeletal morphology data from bone scans into precise and accurate animations of 3D bones moving in 3D space. XROMM methods include: (1) manual alignment (registration) of bone models to video sequences, i.e., Scientific Rotoscoping; (2) computer vision-based autoregistration of bone models to biplanar X-ray videos; and (3) marker-based registration of bone models to biplanar X-ray videos. Here, we describe a novel set of X-ray hardware, software, and workflows for marker-based XROMM. Refurbished C-arm fluoroscopes retrofitted with high-speed video cameras offer a relatively inexpensive X-ray hardware solution for comparative biomechanics research. Precision for our biplanar C-arm hardware and analysis software, measured as the standard deviation of pairwise distances between 1 mm tantalum markers embedded in rigid objects, was found to be ±0.046 mm under optimal conditions and ±0.084 mm under actual in vivo recording conditions. Mean error in measurement of a known distance between two beads was within the 0.01 mm fabrication tolerance of the test object, and mean absolute error was 0.037 mm. Animating 3D bone models from sets of marker positions (XROMM animation) makes it possible to study skeletal kinematics in the context of detailed bone morphology. The biplanar fluoroscopy hardware and computational methods described here should make XROMM an accessible and useful addition to the available technologies for studying the form, function, and evolution of vertebrate animals. J. Exp. Zool. 313A:262–279, 2010. © 2010 Wiley-Liss, Inc.
422 citations
TL;DR: This paper proposes two alternative trend visualizations that use static depictions of trends: one which shows traces of all trends overlaid simultaneously in one display and a second that uses a small multiples display to show the trend traces side-by-side.
Abstract: Animation has been used to show trends in multi-dimensional data. This technique has recently gained new prominence for presentations, most notably with Gapminder Trendalyzer. In Trendalyzer, animation together with interesting data and an engaging presenter helps the audience understand the results of an analysis of the data. It is less clear whether trend animation is effective for analysis. This paper proposes two alternative trend visualizations that use static depictions of trends: one which shows traces of all trends overlaid simultaneously in one display and a second that uses a small multiples display to show the trend traces side-by-side. The paper evaluates the three visualizations for both analysis and presentation. Results indicate that trend animation can be challenging to use even for presentations; while it is the fastest technique for presentation and participants find it enjoyable and exciting, it does lead to many participant errors. Animation is the least effective form for analysis; both static depictions of trends are significantly faster than animation, and the small multiples display is more accurate.
371 citations
25 Mar 2006
TL;DR: Under novel conditions, the startling discovery that distance perception appears not to be significantly compressed in the immersive virtual environment, relative to in the real world is made.
Abstract: Numerous previous studies have suggested that distances appear to be compressed in immersive virtual environments presented via head mounted display systems, relative to in the real world. However, the principal factors that are responsible for this phenomenon have remained largely unidentified. In this paper we shed some new light on this intriguing problem by reporting the results of two recent experiments in which we assess egocentric distance perception in a high fidelity, low latency, immersive virtual environment that represents an exact virtual replica of the participants concurrently occupied real environment. Under these novel conditions, we make the startling discovery that distance perception appears not to be significantly compressed in the immersive virtual environment, relative to in the real world.
199 citations