scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Voltage holding and self-discharge phenomenon in ZnO-Co3O4 core-shell heterostructure for binder-free symmetric supercapacitors

TL;DR: In this paper, an eco-friendly, in-situ, and one-step synthesis of ZnO-Co3O4 core-shell heterostructure (ZC-CSH) using the hydrothermal process as a transcendent nanomaterial for the supercapacitor applications was reported.
About: This article is published in Chemical Engineering Journal.The article was published on 2022-01-01. It has received 34 citations till now. The article focuses on the topics: Supercapacitor & Capacitance.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , oxygen vacancy was introduced into Co 9 S 8 @MnO 2 core-shell heterostructure arrays via a simple ambient process, which can effectively improve the reaction kinetics of MnO 2 and increase the electrochemical active sites.

46 citations

Journal ArticleDOI
TL;DR: In this paper , the performance of different types of nano/micro hybrid structures derived from the metal-organic framework as electrode materials for supercapacitor applications is discussed, and the emerging feasibility of large-scale production, challenges and future perspectives are systematically discussed.

27 citations

Journal ArticleDOI
TL;DR: In this paper , a newly designed ZnO covered with ZnS and paired with CdS to produce a ternary heterostructure was presented, which improved the electrochemical properties of individual constituents, e.g., a capacity of 434 mAh g−1, and charged transfer kinetics.

17 citations

References
More filters
Book
14 Feb 2013
TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Abstract: 1 Introduction and Historical Perspective 2 Similarities and Differences between Supercapacitors and Batteries for Electrical Energy Storage 3 Energetics and Elements of Kinetics of Electrode Processes 4 Elements of Electrostatics Involved in Treatment of Double-Layers and Ions at Capacitors Electrode Interfaces 5 Behavior of Dielectrics in Capacitors and Theories of Dielectric Polarization 6 The Double-Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance 7 Theoretical Treatment and Modeling of the Double-Layer at Electrode Interfaces 8 Behavior of the Double-Layer in Non-Aqueous Electrolytes and Non-Aqueous Electrolyte Capacitors 9 The Double-Layer and Surface Functionalities at Carbon 10 Electrochemical Capacitors Based on Pseudocapacitance 11 The Electrochemical Behavior of Ruthenium Oxide (RuO2) as a Material for Electrochemical Capacitors 12 Capacitance Behavior of Films Conducting, Electrochemically Reactive Polymers 13 The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion-Pairing and Solvation 14 Electrochemical Behavior at Porous Electrodes Applications to Capacitors 15 Energy-Density and Power-Density of Electrical Energy Storage Devices 16 AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems 17 Treatments of Impedance Behavior of Various Circuits and Modeling of Double-Layer Capacitor Frequency Response 18 Self-Discharge of Electrochemical Capacitors in Relation to that of at Batteries 19 Technology Development 20 Patent Survey

4,908 citations

Journal ArticleDOI
TL;DR: It is shown that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either Mesoporous amorphous material or non-porous crystalline MoO( 3).
Abstract: Capacitive energy storage is technologically attractive because of its short charging times and its ability to deliver more power than batteries. The capacitive charge-storage properties of mesoporous films of MoO3 with iso-oriented grains now lead to pseudocapacitive materials that offer increased energy density while still maintaining high power density.

2,643 citations

Journal ArticleDOI
TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Abstract: Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO3, and RbAg4I5/graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

1,397 citations

Journal ArticleDOI
TL;DR: MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost as mentioned in this paper.
Abstract: MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost. In this review, several main factors that affect the electrochemical properties of MnO2-based electrodes are presented. Various strategic design and synthetic methods of MnO2-based electrode materials for enhanced electrochemical performance are highlighted and summarized. Finally, the challenges and future directions toward the development of MnO2-based nanostructured electrode materials for high performance supercapacitors (SCs) are discussed.

750 citations

Journal ArticleDOI
TL;DR: An overview of the energy storage devices from conventional capacitors to supercapacitors to hybrid systems and ultimately to batteries is provided, although the focus is kept on capacitive and hybrid energy storage systems.
Abstract: Over the past decade, electrochemical energy storage (EES) devices have greatly improved, as a wide variety of advanced electrode active materials and new device architectures have been developed. These new materials and devices should be evaluated against clear and rigorous metrics, primarily based on the evidence of real performances. A series of criteria are commonly used to characterize and report performance of EES systems in the literature. However, as advanced EES systems are becoming more and more sophisticated, the methodologies to reliably evaluate the performance of the electrode active materials and EES devices need to be refined to realize the true promise as well as the limitations of these fast-moving technologies, and target areas for further development. In the absence of a commonly accepted core group of metrics, inconsistencies may arise between the values attributed to the materials or devices and their real performances. Herein, we provide an overview of the energy storage devices from conventional capacitors to supercapacitors to hybrid systems and ultimately to batteries. The metrics for evaluation of energy storage systems are described, although the focus is kept on capacitive and hybrid energy storage systems. In addition, we discuss the challenges that still need to be addressed for establishing more sophisticated criteria for evaluating EES systems. We hope this effort will foster ongoing dialog and promote greater understanding of these metrics to develop an international protocol for accurate assessment of EES systems.

695 citations