scispace - formally typeset
Search or ask a question
Book ChapterDOI

Water–Lithium Bromide Absorption Chillers for Solar Cooling

TL;DR: In this article, a discussion of Water-Lithium-bromide-based absorption cooling systems is presented, focusing on fundamental concepts of absorption refrigeration cycle, starting with the simplest intermittent vapor absorption cooling system and gradually elaborating toward the operating principles of commercially used chillers at the end.
Abstract: Solar thermal resources can be effectively utilized to meet the refrigeration and air-conditioning demands for both household and industrial purposes. Considerable fraction of total available electricity is consumed by the conventional vapor compression refrigeration systems (VCRS) during the summer season in countries with tropical climate. The leakage of VCRS refrigerants in the atmosphere has also been identified as one of the major contributors toward ozone layer depletion and hence global warming. The utilization of solar thermal energy for obtaining refrigeration and air-conditioning is the key to address these issues concerning high electricity demand as well as the environmental pollution. Solar thermal energy, being one of the leading resources of green energy, can reduce the carbon footprint considerably, when used for sorption cooling process. The advantages of using sorption cooling systems powered by solar thermal energy over VCRS are twofold when we consider environmental issues. Sorption-based solar thermal cooling reduces the electricity demand for cooling to a large extent, which in turn reduces usage of fossil fuels to produce this electricity, and thus leads to low-carbon footprint. Also, the refrigerants used for sorption cooling are less prone to cause ozone layer depletion. Although sorption-based refrigeration systems driven by solar thermal energy are mature technologies, wide acceptability of such cooling system is yet to be achieved. Two major limitations of sorption-based solar thermal cooling are relatively low coefficient of performance (COP), and large volume requirement. Other than these two limitations, the intermittent nature of solar thermal resource and heat exchanger and control mechanism design complicacies also pose considerable challenge. Sorption cooling technology can be broadly classified base on absorption and adsorption processes. Absorption is a volumetric phenomenon where a substance of one state gets absorbed in another substance in a different state with or without having chemical reaction, such as liquid being absorbed by solid or gas being absorbed by liquid. On the other hand, adsorption is a surface phenomenon due to physical bonding forces such as Van der walls forces between a solid surface and adjacent fluid or due to chemical bonding between the two. The discussion in this chapter is attributed to Water–Lithium Bromide-based absorption cooling systems. The discussion emphasizes on fundamental concepts of absorption refrigeration cycle, starting with simplest intermittent vapor absorption refrigeration system and gradually elaborating toward the operating principles of commercially used chillers at the end. Cycle analysis of most commonly used single-effect absorption chillers is discussed in a detailed manner along with the background knowledge of how to determine pertinent thermodynamic properties at the inlet and outlet of individual components. Finally, methods and design criteria that can improve the system performance are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: Tawalbeh et al. as discussed by the authors investigated the performance of a single-effect absorption chiller utilizing an aqueous lithium bromide solution as the working fluid and driven by hot fluid rejected from either a geothermal power plant or the outlet of a thermal solar collector.
Abstract: This work investigates the performance of a single-effect absorption chiller utilizing an aqueous lithium bromide solution as the working fluid and driven by hot fluid rejected from either a geothermal power plant or the outlet of a thermal solar collector. This relatively low enthalpy return fluid, which will otherwise be reinjected back into the earth, will be utilized as the thermal energy source of the chiller. Although such chillers are considered low-grade energy refrigeration cycles, the one proposed here has an advantage in terms of economy and efficiency. A parametric analysis is performed using Engineering Equation Solver software and is used to highlight the effect of the heat exchanger size on the coefficient of performance of the chiller. The analysis proved that the proposed device can operate with excellent cooling capacity, reaching 16 kW, and a relatively high coefficient of performance (~ 0.7) while being driven by the low-grade energy. The heat source temperature, solution heat exchanger effectiveness and the size of the absorber were shown to be key parameters for the design and operation of absorption chillers. Moreover, increasing the heat source mass flow rate has a significant impact on both cooling capacity and coefficient of performance at low values (< 10 kg/s) and unnoticeable impact at higher values (> 10 kg/s). * Corresponding author Tawalbeh, M., et al. Parametric Study of a Single Effect Lithium ... Year 2020 Volume 8, Issue 3, pp 464-475 465 Journal of Sustainable Development of Energy, Water and Environment Systems

11 citations


Cites background from "Water–Lithium Bromide Absorption Ch..."

  • ...(A) Enthalpy versus concentration and (B) Duhring chart of crystallization plot for LiBr–H2O solution [27,28]....

    [...]

Journal ArticleDOI
TL;DR: In this paper , a mathematical model of the Single-Effect Solar Absorption Cooling system (SESAC), utilizing Lithium Bromide-Water (LiBr-H 2 O) as the working fluid, has been developed with evacuated tube collectors.

4 citations

References
More filters
Book
11 Sep 1985
TL;DR: This paper introduced the physical effects underlying heat and mass transfer phenomena and developed methodologies for solving a variety of real-world problems, such as energy minimization, mass transfer, and energy maximization.
Abstract: This undergraduate-level engineering text introduces the physical effects underlying heat and mass transfer phenomena and develops methodologies for solving a variety of real-world problems.

13,209 citations

Book
01 Jan 2008

11,281 citations

01 Jan 2004
TL;DR: The first ASHRAE conference was held at the University of Ingenieria Mecanica y Electrica (UANL) in Mexico as mentioned in this paper, with the participation of the Asesor de Capitulo Monterrey, Carlos Huerta, who was the first presidente to be elected without being Americano.
Abstract: El pasado 3 de Octubre de 2002 se llevo a cabo la ceremonia de abanderamiento de la Directiva de la Rama Estudiantil de ASHRAE en la Facultad de Ingenieria Mecanica y Electrica (FIME) de la UANL. El evento tuvo lugar en el Auditorio «Raul Quintero Flores» en donde se conto con la presencia de Fernando Gomez quien asistio en representacion del Rector de la UANL y Esteban Baez, Subdirector de Vinculacion de la FIME y representante del Director de la FIME, junto con directivos de ASHRAE Internacional. Despues de una presentacion que describe a la FIME, los asistentes escucharon las palabras del Presidente del Capitulo Monterrey de ASHRAE, Carlos Huerta, quien manifesto su orgullo en ser presidente en este momento y reconocio el trabajo que otros directivos han desarrollado a lo largo de los anos. Senalo que entre las actividades de la asociacion se encuentra el fomento a las actividades de investigacion y desarrollo. Menciono tambien la importancia que la rama estudiantil tiene en la vida de la asociacion y reitero el apoyo de ASHRAE a las actividades estudiantiles y su deseo de contribuir en su formacion. Por su parte el Director de la Region 8, Hugh McMillan, a nombre de ASHRAE internacional manifesto la satisfaccion que brinda trabajar en el area y elogio el entusiasmo de la gente de Monterrey. Comento que todos debemos prepararnos y que fortalecer la rama estudiantil es una gran manera. Se debe tener ademas presente que ya sea como lideres o como participantes, no se debe olvidar que se cuenta con la tutoria del Capitulo Monterrey para seguir adelante. Expreso que se trata de un reto, pero que con los elementos disponibles se vislumbra un futuro brillante. A continuacion el Asesor de Capitulos, Leo Stambaugh, menciono cuales son las funciones de ASHRAE, enfatizando que esta involucrada en proveer una vida mejor a la comunidad. Retomo el aspecto de investigacion con un ejemplo relacionado con una aplicacion en el telescopio espacial, en la que se da investigacion interdisciplinaria que va mas alla de los aspectos tipicos de aire acondicionado. Hablo de los capitulos con los que Monterrey interactua y les deseo a todos que disfrutaran ser parte de ASHRAE tanto como el. El Presidente Electo de ASHRAE Internacional, Richard Rooley en su mensaje menciono que el es el primer presidente de ASHRAE que no es americano, y lo ligo con una narracion en la que describe que todos los que pertenecen a ASHRAE lo hacen porque es una gran sociedad internacional, hablo de la responsabilidad que implica ser ingenieros, senalando que en este campo no hay diferencias entre idiomas, ideologias o religiones. Despues de esta reflexion, junto con el presidente de ASHRAE Monterrey realizaron la ceremonia de abanderamiento que consistio en presentar a Jesus Garza como asesor de la Rama Estudiantil de la FIME y le entregaron un manual en el que se consignan los procedimientos y que le ayudaran a cumplir con su funcion. Se presento formalmente a la directiva de esta rama, compuesta por: Miguel Angel Ruiz Silva, Presidente; Laura Cristina Grimaldo Padilla, Presidente Electo; Rosa Maria Torres Luevano, Tesorero; y Carlos Alberto Espinoza Sanchez, Secretario. Se les entrego el banderin de la Rama Estudiantil de ASHRAE en la UANL, y se les pidio que lo muestren con orgullo en cualquier evento o reunion de la asociacion que realicen. Para concluir el evento, Miguel Ruiz se dirigio a los presentes aceptando este reconocimiento, explicando que la responsabilidad que conlleva solamente podra ser enfrentada con el apoyo de catedraticos, investigadores y los propios estudiantes, invitandolos a que aprovechen el apoyo que ASHRAE otorga. Posteriormente a la ceremonia se efectuo una visita a algunas de las instalaciones de la FIME en donde se hizo mencion de las labores de investigacion y desarrollo que se llevan a cabo en la facultad, incluyendo aspectos energeticos y formas no convencionales de transferencia de calor.

2,110 citations

BookDOI
21 Apr 2016
TL;DR: The ABSIM software package as discussed by the authors is a software package for the ABSIM equation solver, which can be used to calculate the thermodynamic properties of an Absorption Cycle.
Abstract: Introduction Heat Pumps Heat-Driven Heat Pumps Description of Current Absorption Products Outlook for Absorption Technology Absorption Cycle Fundamentals Carnot Cycles Absorption Heat Pump, Type I Absorption Heat Transformer, Type II Absorption Heat Pump as Combination of Rankine Cycles Reversible Analysis with Variable Temperatures Irreversibilities in Absorption Cycle Processes Zero-Order Absorption Cycle Model Absorption Cycle Design Optimization Properties of Working Fluids Analytic Treatment of Thermodynamic Properties Graphical Perspective on Thermodynamic Properties of Absorption Working Fluids Thermodynamic Processes with Mixtures Mixing of Fluids and the Heat of Mixing Specific Heat of Mixtures Desorption Absorption Condensation and Evaporation Compression Pumping Throttling Ammonia Purification Heat Exchangers WATER/LITHIUM BROMIDE SYSTEMS Overview of Water/Lithium Bromide Technology Fundamentals and Operation Crystallization and Absorber Cooling Requirements Corrosion and Materials Compatibility Vacuum Requirements Octyl Alcohol Normal Maintenance and Expected Life Controls Single-Effect Water/Lithium Bromide Technology Single-Effect Water/Lithium Bromide Chiller Operating Conditions Single-Effect with Heat Transfer Models Single-Effect Water/Lithium Bromide Heat Transformer (Type II Heat Pump) Discussion of Available Single-Effect Systems Double-Effect Water/Lithium Bromide Technology Double-Effect Water/Lithium Bromide Cycles Solution Circuit Plumbing Options Operating Conditions of Double-Effect Machines Systems on the Market Advanced Water/Lithium Bromide Cycles Half-Effect Cycle Triple-Effect Cycle Resorption Cycle Additional Water/Lithium Bromide Technology AMMONIA/WATER SYSTEMS Single-Stage Ammonia/Water Systems General Considerations Performance Calculations Examples of Ammonia/Water Absorption Systems in Operations Two-Stage Ammonia/Water Systems Double-Effect Ammonia/Water Systems Double-Lift Ammonia/Water Systems Two-Stage Triple-Effect Ammonia/Water System Generator/Absorber Heat Exchange (GAX) Cycles Concept, Configurations and Design Considerations Branched GAX Systems GAX Cycle Hardware Diffusion Absorption Cycle Introduction Cycle Physics Choice of the Auxiliary Gas Total Pressure of the System Cycle Performance APPENDICES Properties of LiBr/H2O Properties of NH3/H2O Absorption Cycle Modeling Concentration Measurements by Titration Introduction to Engineering Equation Solver Overview of the ABSIM Software Package References Index

917 citations

Journal ArticleDOI
TL;DR: A literature review on absorption refrigeration technology is provided in this paper, where a number of research options such as various types of absorption refrigerator systems, research on working fluids, and improvement of absorption processes are discussed.
Abstract: This paper provides a literature review on absorption refrigeration technology. A number of research options such as various types of absorption refrigeration systems, research on working fluids, and improvement of absorption processes are discussed.

752 citations