scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Water‐Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design

14 Jun 2010-Angewandte Chemie (Wiley-Blackwell)-Vol. 49, Iss: 26, pp 4430-4434
TL;DR: The facile one-step alkali-assisted electrochemical fabrication of CQDs with sizes of 1.2– 3.8 nm which possess size-dependent photoluminescence (PL) and excellent upconversion luminescence properties are reported and the design of photocatalysts is demonstrated to harness the use of the full spectrum of sunlight.
Abstract: Carbon nanostructures are attracting intense interest because of their many unique and novel properties. The strong and tunable luminescence of carbon materials further enhances their versatile properties; in particular, the quantum effect in carbon is extremely important both fundamentally and technologically. Recently, photoluminescent carbonbased nanoparticles have received much attention. They are usually prepared by laser ablation of graphite, electrochemical oxidation of graphite, electrochemical soaking of carbon nanotubes, thermal oxidation of suitable molecular precursors, vapor deposition of soot, proton-beam irradiation of nanodiamonds, microwave synthesis, and bottom-up methods. Although small (ca. 2 nm) graphite nanoparticles show strong blue photoluminescence (PL), definitive experimental evidence for luminescence of carbon structure arising from quantum-confinement effects and size-dependent optical properties of carbon quantum dots (CQDs) remains scarce. Herein, we report the facile one-step alkali-assisted electrochemical fabrication of CQDs with sizes of 1.2– 3.8 nm which possess size-dependent photoluminescence (PL) and excellent upconversion luminescence properties. Significantly, we demonstrate the design of photocatalysts (TiO2/CQDs and SiO2/CQDs complex system) to harness the use of the full spectrum of sunlight (based on the upconversion luminescence properties of CQDs). It can be imagined that judicious cutting of a graphite honeycomb layer into ultrasmall particles can lead to tiny fragments of graphite, yielding CQDs, which may offer a straightforward and facile strategy to prepare high-quality CQDs. Using graphite rods as both anode and cathode, and NaOH/EtOH as electrolyte, we synthesized CQDs with a current intensity of 10–200 mAcm . As a reference, a series of control experiments using acids (e.g. H2SO4/EtOH) as electrolyte yielded no formation of CQDs. This result indicates that alkaline environment is the key factor, and OH group is essential for the formation of CQDs by the electrochemical oxidation process. Figure 1a shows a trans-
Citations
More filters
Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations

Journal ArticleDOI
TL;DR: A facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production and is almost equal to fluorescent dyes, is discussed.
Abstract: Fluorescent carbon-based materials have drawn increasing attention in recent years owing to exceptional advantages such as high optical absorptivity, chemical stability, biocompatibility, and low toxicity. These materials primarily include carbon dots (CDs), nanodiamonds, carbon nanotubes, fullerene, and fluorescent graphene. The superior properties of fluorescent carbon-based materials distinguish them from traditional fluorescent materials, and make them promising candidates for numerous exciting applications, such as bioimaging, medical diagnosis, catalysis, and photovoltaic devices. Among all of these materials, CDs have drawn the most extensive notice, owing to their early discovery and adjustable parameters. However, many scientific issues with CDs still await further investigation. Currently, a broad series of methods for obtaining CD-based materials have been developed, but efficient one-step strategies for the fabrication of CDs on a large scale are still a challenge in this field. Current synthetic methods are mainly deficient in accurate control of lateral dimensions and the resulting surface chemistry, as well as in obtaining fluorescent materials with high quantum yields (QY). Moreover, it is important to expand these kinds of materials to novel applications. Herein, a facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production (yield is ca. 58%), is discussed. The QY was as high as ca. 80%, which is the highest value recorded for fluorescent carbon-based materials, and is almost equal to fluorescent dyes. The polymer-like CDs were converted into carbogenic CDs by a change from low to high synthesis temperature. The photoluminescence (PL) mechanism (high QY/PL quenching) was investigated in detail by ultrafast spectroscopy. The CDs were applied as printing ink on the macro/micro scale and nanocomposites were also prepared by polymerizing CDs with certain polymers. Additionally, the CDs could be utilized as a biosensor reagent for the detection of Fe in biosystems. The CDs were prepared by a hydrothermal method, which is described in the Supporting Information (Figure 1a; see also the Supporting Information, Figure S1). The reaction was conducted by first condensing citric acid and ethylenediamine, whereupon they formed polymer-like CDs, which were then carbonized to form the CDs. The morphology and structure of CDs were confirmed by analysis. Figure 1b shows transmission electron microscopy (TEM) images of the CDs, which can be seen to have a uniform dispersion without apparent aggregation and particle diameters of 2–6 nm. The sizes of CDs were also measured by atomic force microscopy (AFM; Figure S2), and the average height was 2.81 nm. From the high-resolution TEM, most particles are observed to be amorphous carbon particles without any lattices; rare particles possess well-resolved lattice fringes. With such a low carbon-lattice-structure content, no obvious D or G bands were detected in the Raman spectra of the CDs (Figure S3). The XRD patterns of the CDs (Figure 1c) also displayed a broad peak centered at 258 (0.34 nm), which is also attributed to highly disordered carbon atoms. Moreover, NMR spectroscopy (H and C) was employed to distinguish sp-hybridized carbon atoms from sp-hybridized carbon atoms (Figure S4). In the H NMR spectrum, sp carbons were detected. In the C NMR spectrum, signals in the range of 30–45 ppm, which correspond to aliphatic (sp) carbon atoms, and signals from 100–185 ppm, which are indicative of sp carbon atoms, were observed. Signals in the range of 170– 185 ppm, which correspond to carboxyl/amide groups, were also present. In the FTIR analysis of CDs, the following were observed: stretching vibrations of C OH at 3430 cm 1 and C H at 2923 cm 1 and 2850 cm , asymmetric stretching vibrations of C-NH-C at 1126 cm , bending vibrations of N H at 1570 cm , and the vibrational absorption band of C=O at 1635 cm 1 (Figure S5). Moreover, the surface groups were also investigated by XPS analysis (Figure 1d). C1s analysis revealed three different types of carbon atoms: graphitic or aliphatic (C=C and C C), oxygenated, and nitrous (Table S1). In the UV/Vis spectra, the peak was focused on 344 nm in an aqueous solution of CDs. In the fluorescence spectra, CDs have optimal excitation and emission wavelengths at 360 nm and 443 nm, and show a blue color under a hand-held UV lamp (Figure 2a). Excitation-dependent PL behavior was [*] S. Zhu, Q. Meng, Prof. J. Zhang, Y. Song, Prof. K. Zhang, Prof. B. Yang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, 130012 (P. R. China) E-mail: byangchem@jlu.edu.cn

3,095 citations

Journal ArticleDOI
TL;DR: This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods.
Abstract: Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references).

2,451 citations

Journal ArticleDOI
TL;DR: In this article, a review of the photo and electron properties of carbon nanodots is presented to provide further insight into their controversial emission origin and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.
Abstract: Carbon nanodots (C-dots) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. In this review, by introducing the synthesis and photo- and electron-properties of C-dots, we hope to provide further insight into their controversial emission origin (particularly the upconverted photoluminescence) and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.

2,262 citations

Journal ArticleDOI
Shoujun Zhu1, Yubin Song1, Xiaohuan Zhao1, Jieren Shao1, Junhu Zhang1, Bai Yang1 
TL;DR: The actual mechanism of photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers as mentioned in this paper, and three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs).
Abstract: At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated π-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink-enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.

1,987 citations


Cites background or methods from "Water‐Soluble Fluorescent Carbon Qu..."

  • ...Although up-conversion PL (two-photon absorption and anti-Stokes PL) has been reported [23, 54], it is quite important to establish a proper characterization system in order to investigate these types of properties because some so-called “up-conversion PL” in CDs could be due to the excitation of second-order diffraction light (wavelength λ/2) from the monochromators in the fluorescence spectrophotometer [66, 67]....

    [...]

  • ...The applied electrolyte contains ethanol [23], an ionic liquid [32], NaH2PO4 [40], tetrabutylammonium...

    [...]

  • ...CD-1 was synthesized by electrochemical ablation of graphite rod electrodes (top-down method), and they possessed high graphitic crystallinity [23]; CD-2 was fabricated by a two-step method combining “top-down” cutting of GO and various separation routes (a kind of GQD) [30]; CD-3 was synthesized by microwave-assisted small-molecule carbonization (bottom-up method) [118]....

    [...]

  • ...For example, the storage and transport of electrons in CDs have been exploited for solar cells [42, 132, 133], organic light-emitting diodes (OLEDs) [50, 134], photodetectors [135], photocatalysts [23], and supercapacitors [136]....

    [...]

  • ...Generally, CDs are obtained by oxide cutting carbon resources such as graphite power [22], carbon rods [23], carbon fibers [24], carbon nanotubes [25, 26], carbon black [27], and even candle soot [28] (Fig....

    [...]

References
More filters
Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: Raman spectra are reported from single crystals of graphite and other graphite materials as mentioned in this paper, and the Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k-selection rule.
Abstract: Raman spectra are reported from single crystals of graphite and other graphite materials. Single crystals of graphite show one single line at 1575 cm−1. For the other materials like stress‐annealed pyrolitic graphite, commercial graphites, activated charcoal, lampblack, and vitreous carbon another line is detected at 1355 cm−1. The Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k‐selection rule. The intensity of this band allows an estimate of the crystallite size in the surface layer of any carbon sample. Two in‐plane force constants are calculated from the frequencies.

9,373 citations

Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations