scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Watersheds in digital spaces: an efficient algorithm based on immersion simulations

01 Jun 1991-IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Computer Society)-Vol. 13, Iss: 6, pp 583-598
TL;DR: A fast and flexible algorithm for computing watersheds in digital gray-scale images is introduced, based on an immersion process analogy, which is reported to be faster than any other watershed algorithm.
Abstract: A fast and flexible algorithm for computing watersheds in digital gray-scale images is introduced. A review of watersheds and related motion is first presented, and the major methods to determine watersheds are discussed. The algorithm is based on an immersion process analogy, in which the flooding of the water in the picture is efficiently simulated using of queue of pixel. It is described in detail provided in a pseudo C language. The accuracy of this algorithm is proven to be superior to that of the existing implementations, and it is shown that its adaptation to any kind of digital grid and its generalization to n-dimensional images (and even to graphs) are straightforward. The algorithm is reported to be faster than any other watershed algorithm. Applications of this algorithm with regard to picture segmentation are presented for magnetic resonance (MR) imagery and for digital elevation models. An example of 3-D watershed is also provided. >

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Abstract: Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

7,849 citations


Cites background from "Watersheds in digital spaces: an ef..."

  • ...R. Achanta, A. Shaji, and S. Süsstrunk are with the Images and Visual Representation Group, School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 14, EPFL, CH-1015, Lausanne, Switzerland....

    [...]

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations


Cites background from "Watersheds in digital spaces: an ef..."

  • ...The structure of the above algorithm and of an efficient watershed algorithm [17] is essentially identical....

    [...]

Proceedings ArticleDOI
01 Jan 2002
TL;DR: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints, is studied and an efficient and practically fast detection algorithm is presented for an affinely-invariant stable subset of extremal regions, the maximally stable extremal region (MSER).
Abstract: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions , is introduced. Extremal regions possess highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and (2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER). A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from multiple measurement regions (regions obtained by invariant constructions from extremal regions), some that are significantly larger (and hence discriminative) than the MSERs, may be used to establish tentative correspondences. The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes. Significant change of scale (3.5×), illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry (average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained.

3,400 citations


Cites background from "Watersheds in digital spaces: an ef..."

  • ...The structure of the above algorithm and of an efficient watershed algorithm [22] is essentially identical....

    [...]

Journal ArticleDOI
TL;DR: This correspondence presents a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters, and suggests two ways in which it can be employed, namely, by using manual seed selection or by automated procedures.
Abstract: We present here a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters. The method, however, requires the input of a number of seeds, either individual pixels or regions, which will control the formation of regions into which the image will be segmented. In this correspondence, we present the algorithm, discuss briefly its properties, and suggest two ways in which it can be employed, namely, by using manual seed selection or by automated procedures. >

3,331 citations

Journal ArticleDOI
TL;DR: A critical appraisal of the current status of semi-automated and automated methods for the segmentation of anatomical medical images is presented, with an emphasis on the advantages and disadvantages of these methods for medical imaging applications.
Abstract: ▪ Abstract Image segmentation plays a crucial role in many medical-imaging applications, by automating or facilitating the delineation of anatomical structures and other regions of interest. We present a critical appraisal of the current status of semiautomated and automated methods for the segmentation of anatomical medical images. Terminology and important issues in image segmentation are first presented. Current segmentation approaches are then reviewed with an emphasis on the advantages and disadvantages of these methods for medical imaging applications. We conclude with a discussion on the future of image segmentation methods in biomedical research.

2,230 citations

References
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

28,073 citations

Book
01 Jan 1969

16,023 citations

Book
11 Feb 1984
TL;DR: This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.
Abstract: Image Processing and Mathematical Morphology-Frank Y. Shih 2009-03-23 In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications—and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological mechanisms and techniques and their relation to image processing. More than merely a tutorial on vital technical information, the book places this knowledge into a theoretical framework. This helps readers analyze key principles and architectures and then use the author’s novel ideas on implementation of advanced algorithms to formulate a practical and detailed plan to develop and foster their own ideas. The book: Presents the history and state-of-the-art techniques related to image morphological processing, with numerous practical examples Gives readers a clear tutorial on complex technology and other tools that rely on their intuition for a clear understanding of the subject Includes an updated bibliography and useful graphs and illustrations Examines several new algorithms in great detail so that readers can adapt them to derive their own solution approaches This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.

9,566 citations


"Watersheds in digital spaces: an ef..." refers background in this paper

  • ...Now, in the field of image processing and more particularly in Mathematical Morphology (MM) [30], [ 40 ], [45], grayscale pictures are often considered as topographic reliefs....

    [...]

  • ...These extrema are often referred to as regional ones [ 40 ], as opposed to the local ones....

    [...]

G. Matheron1
01 Jan 1975

3,471 citations

Journal ArticleDOI
TL;DR: Six different distance transformations, both old and new, are used for a few different applications, which show both that the choice of distance transformation is important, and that any of the six transformations may be the right choice.
Abstract: A distance transformation converts a binary digital image, consisting of feature and non-feature pixels, into an image where all non-feature pixels have a value corresponding to the distance to the nearest feature pixel. Computing these distances is in principle a global operation. However, global operations are prohibitively costly. Therefore algorithms that consider only small neighborhoods, but still give a reasonable approximation of the Euclidean distance, are necessary. In the first part of this paper optimal distance transformations are developed. Local neighborhoods of sizes up to 7×7 pixels are used. First real-valued distance transformations are considered, and then the best integer approximations of them are computed. A new distance transformation is presented, that is easily computed and has a maximal error of about 2%. In the second part of the paper six different distance transformations, both old and new, are used for a few different applications. These applications show both that the choice of distance transformation is important, and that any of the six transformations may be the right choice.

2,019 citations