scispace - formally typeset
Journal ArticleDOI

Wavelet and wavelet packet compression of electrocardiograms

01 May 1997-IEEE Transactions on Biomedical Engineering (IEEE Trans Biomed Eng)-Vol. 44, Iss: 5, pp 394-402

TL;DR: Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECGs are clinically useful.

AbstractWavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: A novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph using the spectral decomposition of the discrete graph Laplacian L, based on defining scaling using the graph analogue of the Fourier domain.
Abstract: We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator Ttg = g(tL). The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.

1,395 citations

Posted Content
TL;DR: In this paper, the spectral graph wavelet operator is defined based on spectral decomposition of the discrete graph Laplacian, and a wavelet generating kernel and a scale parameter are used to localize this operator to an indicator function.
Abstract: We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian $\L$. Given a wavelet generating kernel $g$ and a scale parameter $t$, we define the scaled wavelet operator $T_g^t = g(t\L)$. The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on $g$, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing $\L$. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.

1,119 citations

Journal ArticleDOI
TL;DR: This paper quantifies the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote and shows that CS represents a competitive alternative to state- of- the-art digital wavelet transform (DWT)-basedECG compression solutions in the context of WBSn-based ECG monitoring systems.
Abstract: Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWT-based counterpart for “good” reconstruction quality.

648 citations

Journal ArticleDOI
TL;DR: This paper proposes to exploit the concept of Fog Computing in Healthcare IoT systems by forming a Geo-distributed intermediary layer of intelligence between sensor nodes and Cloud and presents a prototype of a Smart e-Health Gateway called UT-GATE.
Abstract: Current developments in ICTs such as in Internet-of-Things (IoT) and CyberPhysical Systems (CPS) allow us to develop healthcare solutions with more intelligent and prediction capabilities both for daily life (home/office) and in-hospitals. In most of IoT-based healthcare systems, especially at smart homes or hospitals, a bridging point (i.e.,gateway) is needed between sensor infrastructure network and the Internet. The gateway at the edge of the network often just performs basic functions such as translating between the protocols used in the Internet and sensor networks. These gateways have beneficial knowledge and constructive control over both the sensor network and the data to be transmitted through the Internet. In this paper, we exploit the strategic position of such gateways at the edge of the network to offer several higher-level services such as local storage, real-time local data processing, embedded data mining, etc., presenting thus a Smart e-Health Gateway. We then propose to exploit the concept of Fog Computing in Healthcare IoT systems by forming a Geo-distributed intermediary layer of intelligence between sensor nodes and Cloud. By taking responsibility for handling some burdens of the sensor network and a remote healthcare center, our Fog-assisted system architecture can cope with many challenges in ubiquitous healthcare systems such as mobility, energy efficiency, scalability, and reliability issues. A successful implementation of Smart e-Health Gateways can enable massive deployment of ubiquitous health monitoring systems especially in clinical environments. We also present a prototype of a Smart e-Health Gateway called UT-GATE where some of the discussed higher-level features have been implemented. We also implement an IoT-based Early Warning Score (EWS) health monitoring to practically show the efficiency and relevance of our system on addressing a medical case study. Our proof-of-concept design demonstrates an IoT-based health monitoring system with enhanced overall system intelligence, energy efficiency, mobility, performance, interoperability, security, and reliability.

631 citations

Journal ArticleDOI
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.
Abstract: This statement provides a concise list of diagnostic terms for ECG interpretation that can be shared by students, teachers, and readers of electrocardiography. This effort was motivated by the existence of multiple automated diagnostic code sets containing imprecise and overlapping terms. An intended outcome of this statement list is greater uniformity of ECG diagnosis and a resultant improvement in patient care. The lexicon includes primary diagnostic statements, secondary diagnostic statements, modifiers, and statements for the comparison of ECGs. This diagnostic lexicon should be reviewed and updated periodically.

554 citations


References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

19,033 citations

Book
01 May 1992
TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Abstract: Introduction Preliminaries and notation The what, why, and how of wavelets The continuous wavelet transform Discrete wavelet transforms: Frames Time-frequency density and orthonormal bases Orthonormal bases of wavelets and multiresolutional analysis Orthonormal bases of compactly supported wavelets More about the regularity of compactly supported wavelets Symmetry for compactly supported wavelet bases Characterization of functional spaces by means of wavelets Generalizations and tricks for orthonormal wavelet bases References Indexes.

16,065 citations

Journal ArticleDOI
TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Abstract: Introduction Preliminaries and notation The what, why, and how of wavelets The continuous wavelet transform Discrete wavelet transforms: Frames Time-frequency density and orthonormal bases Orthonormal bases of wavelets and multiresolutional analysis Orthonormal bases of compactly supported wavelets More about the regularity of compactly supported wavelets Symmetry for compactly supported wavelet bases Characterization of functional spaces by means of wavelets Generalizations and tricks for orthonormal wavelet bases References Indexes.

14,139 citations

Journal ArticleDOI
Ingrid Daubechies1
TL;DR: This work construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity, by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction.
Abstract: We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity. The order of regularity increases linearly with the support width. We start by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction. The construction then follows from a synthesis of these different approaches.

8,350 citations


"Wavelet and wavelet packet compress..." refers methods in this paper

  • ...In the work described in this paper, was chosen to be Daubechie's W6 wavelet [10], which is illustrated in Figure 1....

    [...]

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,812 citations


Additional excerpts

  • ...algorithm was inspired by that in [28]....

    [...]