scispace - formally typeset
Search or ask a question
Book

Wavelets and filter banks

About: The article was published on 1996-01-01 and is currently open access. It has received 3808 citations till now. The article focuses on the topics: Quadrature mirror filter & Filter design.
Citations
More filters
Book
01 Feb 2006
TL;DR: Wavelet analysis of finite energy signals and random variables and stochastic processes, analysis and synthesis of long memory processes, and the wavelet variance.
Abstract: 1. Introduction to wavelets 2. Review of Fourier theory and filters 3. Orthonormal transforms of time series 4. The discrete wavelet transform 5. The maximal overlap discrete wavelet transform 6. The discrete wavelet packet transform 7. Random variables and stochastic processes 8. The wavelet variance 9. Analysis and synthesis of long memory processes 10. Wavelet-based signal estimation 11. Wavelet analysis of finite energy signals Appendix. Answers to embedded exercises References Author index Subject index.

2,734 citations

Journal ArticleDOI
TL;DR: Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual- tree approach.
Abstract: The paper discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing The authors use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform The four fundamentals, intertwined shortcomings of wavelet transform and some solutions are also discussed Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual-tree approach

2,407 citations

Book ChapterDOI
TL;DR: In this paper, a self-contained derivation from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering, is presented, which asymptotically reduces the computational complexity of the transform by a factor two.
Abstract: This article is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is well-known to algebraists (and expressed by the formulaSL(n;R[z, z−1])=E(n;R[z, z−1])); it is also used in linear systems theory in the electrical engineering community. We present here a self-contained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e., non-unitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a wavelet-like transform that maps integers to integers.

2,357 citations


Cites methods from "Wavelets and filter banks"

  • ...lThis family was derived independently, but without the use of lifting, by several people: Reissell [38], Tian and Wells [47l, and Strang [ 43 ]....

    [...]

  • ...For details on wavelet and subband transforms we refer to [ 43 ] and [57]....

    [...]

Book
14 Aug 1997
TL;DR: This work describes the development of the Basic Multiresolution Wavelet System and some of its components, as well as some of the techniques used to design and implement these systems.
Abstract: 1 Introduction to Wavelets 2 A Multiresolution Formulation of Wavelet Systems 3 Filter Banks and the Discrete Wavelet Transform 4 Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Tight Frames, and Unconditional Bases 5 The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients 6 Regularity, Moments, and Wavelet System Design 7 Generalizations of the Basic Multiresolution Wavelet System 8 Filter Banks and Transmultiplexers 9 Calculation of the Discrete Wavelet Transform 10 Wavelet-Based Signal Processing and Applications 11 Summary Overview 12 References Bibliography Appendix A Derivations for Chapter 5 on Scaling Functions Appendix B Derivations for Section on Properties Appendix C Matlab Programs Index

2,339 citations

Journal ArticleDOI
TL;DR: The rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, including segmentation, shape representation, matching and motion tracking is reviewed.

2,222 citations