scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Wavelets and filter banks: theory and design

01 Sep 1992-IEEE Transactions on Signal Processing (IEEE)-Vol. 40, Iss: 9, pp 2207-2232
TL;DR: The perfect reconstruction condition is posed as a Bezout identity, and it is shown how it is possible to find all higher-degree complementary filters based on an analogy with the theory of Diophantine equations.
Abstract: The wavelet transform is compared with the more classical short-time Fourier transform approach to signal analysis. Then the relations between wavelets, filter banks, and multiresolution signal processing are explored. A brief review is given of perfect reconstruction filter banks, which can be used both for computing the discrete wavelet transform, and for deriving continuous wavelet bases, provided that the filters meet a constraint known as regularity. Given a low-pass filter, necessary and sufficient conditions for the existence of a complementary high-pass filter that will permit perfect reconstruction are derived. The perfect reconstruction condition is posed as a Bezout identity, and it is shown how it is possible to find all higher-degree complementary filters based on an analogy with the theory of Diophantine equations. An alternative approach based on the theory of continued fractions is also given. These results are used to design highly regular filter banks, which generate biorthogonal continuous wavelet bases with symmetries. >

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI
TL;DR: A "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information is pursued and it is shown that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves.
Abstract: The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discrete-domain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discrete-domain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and, thus, it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for N-pixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuous-domain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.

3,948 citations


Cites methods from "Wavelets and filter banks: theory a..."

  • ...All experiments in this section use a wavelet transform with “9-7” biorthogonal filters [37], [38] and 6 decompositi on levels....

    [...]

Journal ArticleDOI
TL;DR: A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed and it is shown that the wavelet transform is particularly well adapted to progressive transmission.
Abstract: A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed. This method involves two steps. First, a wavelet transform used in order to obtain a set of biorthogonal subclasses of images: the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required to describe the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vector quantized using a multiresolution codebook. To encode the wavelet coefficients, a noise shaping bit allocation procedure which assumes that details at high resolution are less visible to the human eye is proposed. In order to allow the receiver to recognize a picture as quickly as possible at minimum cost, a progressive transmission scheme is presented. It is shown that the wavelet transform is particularly well adapted to progressive transmission. >

3,925 citations

Journal ArticleDOI
01 Jun 1995
TL;DR: The mathematics have been worked out in excruciating detail, and wavelet theory is now in the refinement stage, which involves generalizing and extending wavelets, such as in extending wavelet packet techniques.
Abstract: Wavelets were developed independently by mathematicians, quantum physicists, electrical engineers and geologists, but collaborations among these fields during the last decade have led to new and varied applications. What are wavelets, and why might they be useful to you? The fundamental idea behind wavelets is to analyze according to scale. Indeed, some researchers feel that using wavelets means adopting a whole new mind-set or perspective in processing data. Wavelets are functions that satisfy certain mathematical requirements and are used in representing data or other functions. Most of the basic wavelet theory has now been done. The mathematics have been worked out in excruciating detail, and wavelet theory is now in the refinement stage. This involves generalizing and extending wavelets, such as in extending wavelet packet techniques. The future of wavelets lies in the as-yet uncharted territory of applications. Wavelet techniques have not been thoroughly worked out in such applications as practical data analysis, where, for example, discretely sampled time-series data might need to be analyzed. Such applications offer exciting avenues for exploration. >

3,022 citations


Cites background from "Wavelets and filter banks: theory a..."

  • ...One way to see the time-frequency resolution differences between the Fourier transform and the wavelet transform is to look at the basis function coverage of the time-frequency plane ( 5 )....

    [...]

Journal ArticleDOI
Olivier Rioul1, Martin Vetterli
TL;DR: A simple, nonrigorous, synthetic view of wavelet theory is presented for both review and tutorial purposes, which includes nonstationary signal analysis, scale versus frequency,Wavelet analysis and synthesis, scalograms, wavelet frames and orthonormal bases, the discrete-time case, and applications of wavelets in signal processing.
Abstract: A simple, nonrigorous, synthetic view of wavelet theory is presented for both review and tutorial purposes. The discussion includes nonstationary signal analysis, scale versus frequency, wavelet analysis and synthesis, scalograms, wavelet frames and orthonormal bases, the discrete-time case, and applications of wavelets in signal processing. The main definitions and properties of wavelet transforms are covered, and connections among the various fields where results have been developed are shown. >

2,945 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that under fairly general conditions, exact reconstruction schemes with synthesis filters different from the analysis filters give rise to two dual Riesz bases of compactly supported wavelets.
Abstract: Orthonormal bases of compactly supported wavelet bases correspond to subband coding schemes with exact reconstruction in which the analysis and synthesis filters coincide. We show here that under fairly general conditions, exact reconstruction schemes with synthesis filters different from the analysis filters give rise: to two dual Riesz bases of compactly supported wavelets. We give necessary and sufficient conditions for biorthogonality of the corresponding scaling functions, and we present a sufficient condition for the decay of their Fourier transforms. We study the regularity of these biorthogonal bases. We provide several families of examples, all symmetric (corresponding to “linear phase” filters). In particular we can construct symmetric biorthogonal wavelet bases with arbitrarily high preassigned regularity; we also show how to construct symmetric biorthogonal wavelet bases “close” to a (nonsymmetric) orthonormal basis.

2,854 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Journal ArticleDOI
Ingrid Daubechies1
TL;DR: This work construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity, by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction.
Abstract: We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity. The order of regularity increases linearly with the support width. We start by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction. The construction then follows from a synthesis of these different approaches.

8,588 citations

Journal ArticleDOI
TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,975 citations

Book
01 Jan 1980

6,837 citations

Journal ArticleDOI
TL;DR: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied and the notion of time-frequency localization is made precise, within this framework, by two localization theorems.
Abstract: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied. The first procedure is the short-time or windowed Fourier transform; the second is the wavelet transform, in which high-frequency components are studied with sharper time resolution than low-frequency components. The similarities and the differences between these two methods are discussed. For both schemes a detailed study is made of the reconstruction method and its stability as a function of the chosen time-frequency density. Finally, the notion of time-frequency localization is made precise, within this framework, by two localization theorems. >

6,180 citations